{"title":"鞣花酸通过FXR激活和炎症通路调节减轻α -萘异硫氰酸盐诱导的大鼠胆汁淤积。","authors":"Hamza Ahmed Taher, Munaf Hashim Zalzala","doi":"10.1515/jcim-2024-0425","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The liver is vital for metabolism, detoxification, storage, and secretion. Cholestasis, in which bile flow is hindered, can cause serious harm to the liver. This study examines the potential of ellagic acid to prevent cholestasis in male rats that has been caused by alpha-naphthyl isothiocyanate (ANIT).</p><p><strong>Method: </strong>Male rats were divided into four groups for an 8-day study. The control group received 5 % dimethyl sulfoxide (DMSO) orally for eight days and maize oil (1 mL/kg, orally) 48 h before sacrifice. The ANIT Group received 5 % DMSO orally for 8 days, the ANIT (100 mg/kg, orally) administered on the 6th day, 48 h before sacrifice. The low-Dose Ellagic Acid + ANIT Group was given ellagic acid (5 mg/kg, orally) for eight days, with ANIT (100 mg/kg, orally) on the 6th day, 48 h prior to sacrifice. The high-Dose Ellagic Acid + ANIT Group received ellagic acid (10 mg/kg, orally) for eight days, the ANIT (100 mg/kg, orally) on the 6th day, 48 h before sacrifice. Different biochemical and histopathological analyses were conducted to assess the protective effects of ellagic acid on ANIT-induced liver injury.</p><p><strong>Results: </strong>ANIT significantly elevated serum of liver enzymes. It caused severe bile duct inflammation and reduced bile salt export pump (BSEP) and Na+-taurocholate cotransporting polypeptide (NTCP) expression, indicating liver injury. Ellagic acid treatment mitigated these changes, improving biochemical parameters and reducing liver damage. ANIT-induced cholestasis results in bile acid accumulation due to decreased BSEP and NTCP expression linked to impaired farnesoid X receptor (FXR) signaling. Ellagic acid restored BSEP and NTCP levels via FXR activation, reducing bile acids and inflammatory markers IL-1β and TNF-α. Ellagic acid also enhanced SIRT1 activity, further improving FXR function and bile acid homeostasis.</p><p><strong>Conclusions: </strong>Ellagic acid exhibits protective effects against cholestasis by enhancing the FXR signaling and <i>ntcp</i> and <i>bsep</i> expression with mitigating liver damage and inflammation.</p>","PeriodicalId":15556,"journal":{"name":"Journal of Complementary and Integrative Medicine","volume":" ","pages":"296-303"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ellagic acid mitigates alpha-naphthyl isothiocyanate-induced cholestasis in rats via FXR activation and inflammatory pathway modulation.\",\"authors\":\"Hamza Ahmed Taher, Munaf Hashim Zalzala\",\"doi\":\"10.1515/jcim-2024-0425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>The liver is vital for metabolism, detoxification, storage, and secretion. Cholestasis, in which bile flow is hindered, can cause serious harm to the liver. This study examines the potential of ellagic acid to prevent cholestasis in male rats that has been caused by alpha-naphthyl isothiocyanate (ANIT).</p><p><strong>Method: </strong>Male rats were divided into four groups for an 8-day study. The control group received 5 % dimethyl sulfoxide (DMSO) orally for eight days and maize oil (1 mL/kg, orally) 48 h before sacrifice. The ANIT Group received 5 % DMSO orally for 8 days, the ANIT (100 mg/kg, orally) administered on the 6th day, 48 h before sacrifice. The low-Dose Ellagic Acid + ANIT Group was given ellagic acid (5 mg/kg, orally) for eight days, with ANIT (100 mg/kg, orally) on the 6th day, 48 h prior to sacrifice. The high-Dose Ellagic Acid + ANIT Group received ellagic acid (10 mg/kg, orally) for eight days, the ANIT (100 mg/kg, orally) on the 6th day, 48 h before sacrifice. Different biochemical and histopathological analyses were conducted to assess the protective effects of ellagic acid on ANIT-induced liver injury.</p><p><strong>Results: </strong>ANIT significantly elevated serum of liver enzymes. It caused severe bile duct inflammation and reduced bile salt export pump (BSEP) and Na+-taurocholate cotransporting polypeptide (NTCP) expression, indicating liver injury. Ellagic acid treatment mitigated these changes, improving biochemical parameters and reducing liver damage. ANIT-induced cholestasis results in bile acid accumulation due to decreased BSEP and NTCP expression linked to impaired farnesoid X receptor (FXR) signaling. Ellagic acid restored BSEP and NTCP levels via FXR activation, reducing bile acids and inflammatory markers IL-1β and TNF-α. Ellagic acid also enhanced SIRT1 activity, further improving FXR function and bile acid homeostasis.</p><p><strong>Conclusions: </strong>Ellagic acid exhibits protective effects against cholestasis by enhancing the FXR signaling and <i>ntcp</i> and <i>bsep</i> expression with mitigating liver damage and inflammation.</p>\",\"PeriodicalId\":15556,\"journal\":{\"name\":\"Journal of Complementary and Integrative Medicine\",\"volume\":\" \",\"pages\":\"296-303\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complementary and Integrative Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jcim-2024-0425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complementary and Integrative Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jcim-2024-0425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Ellagic acid mitigates alpha-naphthyl isothiocyanate-induced cholestasis in rats via FXR activation and inflammatory pathway modulation.
Objectives: The liver is vital for metabolism, detoxification, storage, and secretion. Cholestasis, in which bile flow is hindered, can cause serious harm to the liver. This study examines the potential of ellagic acid to prevent cholestasis in male rats that has been caused by alpha-naphthyl isothiocyanate (ANIT).
Method: Male rats were divided into four groups for an 8-day study. The control group received 5 % dimethyl sulfoxide (DMSO) orally for eight days and maize oil (1 mL/kg, orally) 48 h before sacrifice. The ANIT Group received 5 % DMSO orally for 8 days, the ANIT (100 mg/kg, orally) administered on the 6th day, 48 h before sacrifice. The low-Dose Ellagic Acid + ANIT Group was given ellagic acid (5 mg/kg, orally) for eight days, with ANIT (100 mg/kg, orally) on the 6th day, 48 h prior to sacrifice. The high-Dose Ellagic Acid + ANIT Group received ellagic acid (10 mg/kg, orally) for eight days, the ANIT (100 mg/kg, orally) on the 6th day, 48 h before sacrifice. Different biochemical and histopathological analyses were conducted to assess the protective effects of ellagic acid on ANIT-induced liver injury.
Results: ANIT significantly elevated serum of liver enzymes. It caused severe bile duct inflammation and reduced bile salt export pump (BSEP) and Na+-taurocholate cotransporting polypeptide (NTCP) expression, indicating liver injury. Ellagic acid treatment mitigated these changes, improving biochemical parameters and reducing liver damage. ANIT-induced cholestasis results in bile acid accumulation due to decreased BSEP and NTCP expression linked to impaired farnesoid X receptor (FXR) signaling. Ellagic acid restored BSEP and NTCP levels via FXR activation, reducing bile acids and inflammatory markers IL-1β and TNF-α. Ellagic acid also enhanced SIRT1 activity, further improving FXR function and bile acid homeostasis.
Conclusions: Ellagic acid exhibits protective effects against cholestasis by enhancing the FXR signaling and ntcp and bsep expression with mitigating liver damage and inflammation.
期刊介绍:
Journal of Complementary and Integrative Medicine (JCIM) focuses on evidence concerning the efficacy and safety of complementary medical (CM) whole systems, practices, interventions and natural health products, including herbal and traditional medicines. The journal is edited by Ed Lui of the University of Western Ontario. Topics: -Quality, efficacy, and safety of natural health products, dietary supplements, traditional medicines and their synthetic duplicates -Efficacy and safety of complementary therapies -Evidence-based medicine and practice, including evidence of traditional use -Curriculum development, educational system and competency of complementary health programs -Methodologies on research and evaluation of traditional medicines and herbal products -Integrative medicine: basic and clinical research and practice -Innovation in CAM Curriculum -Educational Material Design