{"title":"具有模块化功能的囊泡基原组织纤维的程序化制备。","authors":"Tomoya Kojima, Kouichi Asakura, Pierangelo Gobbo, Taisuke Banno","doi":"10.1002/advs.202409066","DOIUrl":null,"url":null,"abstract":"<p>Multicellular organisms have hierarchical structures where multiple cells collectively form tissues with complex 3D architectures and exhibit higher-order functions. Inspired by this, to date, multiple protocell models have been assembled to form tissue-like structures termed prototissues. Despite recent advances in this research area, the programmed assembly of protocells into prototissue fibers with emergent functions still represents a significant challenge. The possibility of assembling prototissue fibers will open up a way to a novel type of prototissue subunit capable of hierarchical assembly into unprecedented soft functional materials with tunable architectures, modular and distributed functionalities. Herein, the first method to fabricate freestanding vesicle-based prototissue fibers with controlled lengths and diameters is devised. Importantly, it is also shown that the fibers can be composed of different specialized modules that, for example, can endow the fiber with magnetotaxis capabilities, or that can work synergistically to take an input diffusible chemical signals and transduce it into a readable fluorescent output through a hosted enzyme cascade reaction. Overall, this research addresses an important challenge of prototissue engineering and will find important applications in 3D bio-printing, tissue engineering, and soft robotics as next-generation bioinspired materials.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 16","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202409066","citationCount":"0","resultStr":"{\"title\":\"Programmed Fabrication of Vesicle-Based Prototissue Fibers with Modular Functionalities\",\"authors\":\"Tomoya Kojima, Kouichi Asakura, Pierangelo Gobbo, Taisuke Banno\",\"doi\":\"10.1002/advs.202409066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multicellular organisms have hierarchical structures where multiple cells collectively form tissues with complex 3D architectures and exhibit higher-order functions. Inspired by this, to date, multiple protocell models have been assembled to form tissue-like structures termed prototissues. Despite recent advances in this research area, the programmed assembly of protocells into prototissue fibers with emergent functions still represents a significant challenge. The possibility of assembling prototissue fibers will open up a way to a novel type of prototissue subunit capable of hierarchical assembly into unprecedented soft functional materials with tunable architectures, modular and distributed functionalities. Herein, the first method to fabricate freestanding vesicle-based prototissue fibers with controlled lengths and diameters is devised. Importantly, it is also shown that the fibers can be composed of different specialized modules that, for example, can endow the fiber with magnetotaxis capabilities, or that can work synergistically to take an input diffusible chemical signals and transduce it into a readable fluorescent output through a hosted enzyme cascade reaction. Overall, this research addresses an important challenge of prototissue engineering and will find important applications in 3D bio-printing, tissue engineering, and soft robotics as next-generation bioinspired materials.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 16\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202409066\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/advs.202409066\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202409066","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Programmed Fabrication of Vesicle-Based Prototissue Fibers with Modular Functionalities
Multicellular organisms have hierarchical structures where multiple cells collectively form tissues with complex 3D architectures and exhibit higher-order functions. Inspired by this, to date, multiple protocell models have been assembled to form tissue-like structures termed prototissues. Despite recent advances in this research area, the programmed assembly of protocells into prototissue fibers with emergent functions still represents a significant challenge. The possibility of assembling prototissue fibers will open up a way to a novel type of prototissue subunit capable of hierarchical assembly into unprecedented soft functional materials with tunable architectures, modular and distributed functionalities. Herein, the first method to fabricate freestanding vesicle-based prototissue fibers with controlled lengths and diameters is devised. Importantly, it is also shown that the fibers can be composed of different specialized modules that, for example, can endow the fiber with magnetotaxis capabilities, or that can work synergistically to take an input diffusible chemical signals and transduce it into a readable fluorescent output through a hosted enzyme cascade reaction. Overall, this research addresses an important challenge of prototissue engineering and will find important applications in 3D bio-printing, tissue engineering, and soft robotics as next-generation bioinspired materials.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.