具有模块化功能的囊泡基原组织纤维的程序化制备。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tomoya Kojima, Kouichi Asakura, Pierangelo Gobbo, Taisuke Banno
{"title":"具有模块化功能的囊泡基原组织纤维的程序化制备。","authors":"Tomoya Kojima,&nbsp;Kouichi Asakura,&nbsp;Pierangelo Gobbo,&nbsp;Taisuke Banno","doi":"10.1002/advs.202409066","DOIUrl":null,"url":null,"abstract":"<p>Multicellular organisms have hierarchical structures where multiple cells collectively form tissues with complex 3D architectures and exhibit higher-order functions. Inspired by this, to date, multiple protocell models have been assembled to form tissue-like structures termed prototissues. Despite recent advances in this research area, the programmed assembly of protocells into prototissue fibers with emergent functions still represents a significant challenge. The possibility of assembling prototissue fibers will open up a way to a novel type of prototissue subunit capable of hierarchical assembly into unprecedented soft functional materials with tunable architectures, modular and distributed functionalities. Herein, the first method to fabricate freestanding vesicle-based prototissue fibers with controlled lengths and diameters is devised. Importantly, it is also shown that the fibers can be composed of different specialized modules that, for example, can endow the fiber with magnetotaxis capabilities, or that can work synergistically to take an input diffusible chemical signals and transduce it into a readable fluorescent output through a hosted enzyme cascade reaction. Overall, this research addresses an important challenge of prototissue engineering and will find important applications in 3D bio-printing, tissue engineering, and soft robotics as next-generation bioinspired materials.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 16","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202409066","citationCount":"0","resultStr":"{\"title\":\"Programmed Fabrication of Vesicle-Based Prototissue Fibers with Modular Functionalities\",\"authors\":\"Tomoya Kojima,&nbsp;Kouichi Asakura,&nbsp;Pierangelo Gobbo,&nbsp;Taisuke Banno\",\"doi\":\"10.1002/advs.202409066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multicellular organisms have hierarchical structures where multiple cells collectively form tissues with complex 3D architectures and exhibit higher-order functions. Inspired by this, to date, multiple protocell models have been assembled to form tissue-like structures termed prototissues. Despite recent advances in this research area, the programmed assembly of protocells into prototissue fibers with emergent functions still represents a significant challenge. The possibility of assembling prototissue fibers will open up a way to a novel type of prototissue subunit capable of hierarchical assembly into unprecedented soft functional materials with tunable architectures, modular and distributed functionalities. Herein, the first method to fabricate freestanding vesicle-based prototissue fibers with controlled lengths and diameters is devised. Importantly, it is also shown that the fibers can be composed of different specialized modules that, for example, can endow the fiber with magnetotaxis capabilities, or that can work synergistically to take an input diffusible chemical signals and transduce it into a readable fluorescent output through a hosted enzyme cascade reaction. Overall, this research addresses an important challenge of prototissue engineering and will find important applications in 3D bio-printing, tissue engineering, and soft robotics as next-generation bioinspired materials.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 16\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202409066\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/advs.202409066\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202409066","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

多细胞生物具有层次结构,其中多个细胞共同形成具有复杂3D结构的组织,并表现出高阶功能。受此启发,迄今为止,多个原始细胞模型已经组装形成组织样结构,称为原始组织。尽管这一研究领域最近取得了进展,但将原细胞程序化组装成具有紧急功能的原组织纤维仍然是一个重大挑战。组装原组织纤维的可能性将为一种新型的原组织亚基开辟一条道路,这种新型的原组织亚基能够分层组装成具有可调结构、模块化和分布式功能的前所未有的软功能材料。本文设计了第一种可控制长度和直径的独立囊泡基原始组织纤维的制备方法。重要的是,研究还表明,纤维可以由不同的专门模块组成,例如,这些模块可以赋予纤维磁性,或者可以协同工作,通过宿主酶级联反应将输入的扩散化学信号转导成可读的荧光输出。总的来说,这项研究解决了原组织工程的一个重要挑战,并将在3D生物打印、组织工程和软机器人中找到重要的应用,作为下一代生物灵感材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Programmed Fabrication of Vesicle-Based Prototissue Fibers with Modular Functionalities

Programmed Fabrication of Vesicle-Based Prototissue Fibers with Modular Functionalities

Multicellular organisms have hierarchical structures where multiple cells collectively form tissues with complex 3D architectures and exhibit higher-order functions. Inspired by this, to date, multiple protocell models have been assembled to form tissue-like structures termed prototissues. Despite recent advances in this research area, the programmed assembly of protocells into prototissue fibers with emergent functions still represents a significant challenge. The possibility of assembling prototissue fibers will open up a way to a novel type of prototissue subunit capable of hierarchical assembly into unprecedented soft functional materials with tunable architectures, modular and distributed functionalities. Herein, the first method to fabricate freestanding vesicle-based prototissue fibers with controlled lengths and diameters is devised. Importantly, it is also shown that the fibers can be composed of different specialized modules that, for example, can endow the fiber with magnetotaxis capabilities, or that can work synergistically to take an input diffusible chemical signals and transduce it into a readable fluorescent output through a hosted enzyme cascade reaction. Overall, this research addresses an important challenge of prototissue engineering and will find important applications in 3D bio-printing, tissue engineering, and soft robotics as next-generation bioinspired materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信