镍铝尖晶石衍生Ni-F-Al活性位点催化强温室气体1,1,1,2-四氟乙烷脱氢氟化

IF 2.7 4区 环境科学与生态学 Q3 ENERGY & FUELS
Fangcao Liu, Bing Liu, Yiwei Sun, Jinru Liu, Yubao Bi, Jiaming Zhao, Xiaoli Wei, Wenfeng Han
{"title":"镍铝尖晶石衍生Ni-F-Al活性位点催化强温室气体1,1,1,2-四氟乙烷脱氢氟化","authors":"Fangcao Liu,&nbsp;Bing Liu,&nbsp;Yiwei Sun,&nbsp;Jinru Liu,&nbsp;Yubao Bi,&nbsp;Jiaming Zhao,&nbsp;Xiaoli Wei,&nbsp;Wenfeng Han","doi":"10.1002/ghg.2324","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>HFC-134a (1,1,1,2-tetrafluoroethane) is one of the most common refrigerants with global warming potential (100 years) of 1300. It is regulated to be phased out gradually according to the Kigali Amendment to the Montreal Protocol. Treatment of this stable chemical poses significant challenge. Highly efficient nickel aluminum spinel catalysts were fabricated by sol–gel method for the catalytic dehydrofluorination of HFC-134a. The effect of Ni/Al ratio in the NiAl<sub>2</sub>O<sub>4</sub> spinel precursors on the performance of NiAl catalysts was studied by x-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscope (SEM), transmission electron microscopy (TEM), NH<sub>3</sub>-TPD, and XPS. Nickel–aluminum ratio in the nickel–aluminum spinel precursor plays a major role on the formation of strong acid and active species Ni-F-Al. With Ni/Al ratio of 4, the (3 1 1) crystal face of NiAl<sub>2</sub>O<sub>4</sub> interfaced with the (1 1 1) crystal face of NiO and the (4 0 0) crystal face of NiAl<sub>2</sub>O<sub>4</sub>. This interaction facilitates the formation of Ni-F-Al active species following the dehydrofluorination reaction. Furthermore, the Ni-F-Al species altered the acid structure of NiAl catalysts. It was found that NiAl catalyst with a Ni/Al ratio of 4 has the best catalytic performance compared with other catalysts (with conversion of 35%), and no deactivation trend was observed after 50 h of time on stream. (Reaction conditions: N<sub>2</sub>/CF<sub>3</sub>CH<sub>2</sub>F = 10, T = 450°C, GHSV = 660 h<sup>−1</sup>).</p>\n </div>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"15 1","pages":"68-78"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nickel Aluminum Spinel Derived Ni-F-Al Active Site for the Catalytic Dehydrofluorination of Potent Greenhouse Gas 1,1,1,2-Tetrafluoroethane\",\"authors\":\"Fangcao Liu,&nbsp;Bing Liu,&nbsp;Yiwei Sun,&nbsp;Jinru Liu,&nbsp;Yubao Bi,&nbsp;Jiaming Zhao,&nbsp;Xiaoli Wei,&nbsp;Wenfeng Han\",\"doi\":\"10.1002/ghg.2324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>HFC-134a (1,1,1,2-tetrafluoroethane) is one of the most common refrigerants with global warming potential (100 years) of 1300. It is regulated to be phased out gradually according to the Kigali Amendment to the Montreal Protocol. Treatment of this stable chemical poses significant challenge. Highly efficient nickel aluminum spinel catalysts were fabricated by sol–gel method for the catalytic dehydrofluorination of HFC-134a. The effect of Ni/Al ratio in the NiAl<sub>2</sub>O<sub>4</sub> spinel precursors on the performance of NiAl catalysts was studied by x-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscope (SEM), transmission electron microscopy (TEM), NH<sub>3</sub>-TPD, and XPS. Nickel–aluminum ratio in the nickel–aluminum spinel precursor plays a major role on the formation of strong acid and active species Ni-F-Al. With Ni/Al ratio of 4, the (3 1 1) crystal face of NiAl<sub>2</sub>O<sub>4</sub> interfaced with the (1 1 1) crystal face of NiO and the (4 0 0) crystal face of NiAl<sub>2</sub>O<sub>4</sub>. This interaction facilitates the formation of Ni-F-Al active species following the dehydrofluorination reaction. Furthermore, the Ni-F-Al species altered the acid structure of NiAl catalysts. It was found that NiAl catalyst with a Ni/Al ratio of 4 has the best catalytic performance compared with other catalysts (with conversion of 35%), and no deactivation trend was observed after 50 h of time on stream. (Reaction conditions: N<sub>2</sub>/CF<sub>3</sub>CH<sub>2</sub>F = 10, T = 450°C, GHSV = 660 h<sup>−1</sup>).</p>\\n </div>\",\"PeriodicalId\":12796,\"journal\":{\"name\":\"Greenhouse Gases: Science and Technology\",\"volume\":\"15 1\",\"pages\":\"68-78\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Greenhouse Gases: Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ghg.2324\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Greenhouse Gases: Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ghg.2324","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

HFC-134a(1,1,1,2-四氟乙烷)是最常见的制冷剂之一,其全球变暖潜能值(100年)为1300年。根据《蒙特利尔议定书》基加利修正案,规定逐步淘汰。这种稳定的化学物质的处理提出了重大挑战。采用溶胶-凝胶法制备了高效镍铝尖晶石催化剂,用于HFC-134a的催化脱氢氟化反应。采用x射线衍射(XRD)、brunauer - emmet - teller (BET)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、NH3-TPD和XPS研究了NiAl2O4尖晶石前驱体中Ni/Al比对NiAl催化剂性能的影响。镍铝尖晶石前驱体中镍铝比对强酸和活性物质Ni-F-Al的形成起主要作用。当Ni/Al比为4时,NiAl2O4的(31 11)晶面与NiO的(11 11)晶面和NiAl2O4的(4 0 0)晶面形成界面。这种相互作用促进了Ni-F-Al活性物质在脱氢氟化反应后的形成。此外,Ni-F-Al组分改变了NiAl催化剂的酸结构。结果表明,Ni/Al比为4的NiAl催化剂的催化性能最好(转化率为35%),且在运行50 h后无失活趋势。(反应条件:N2/CF3CH2F = 10, T = 450℃,GHSV = 660 h−1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nickel Aluminum Spinel Derived Ni-F-Al Active Site for the Catalytic Dehydrofluorination of Potent Greenhouse Gas 1,1,1,2-Tetrafluoroethane

HFC-134a (1,1,1,2-tetrafluoroethane) is one of the most common refrigerants with global warming potential (100 years) of 1300. It is regulated to be phased out gradually according to the Kigali Amendment to the Montreal Protocol. Treatment of this stable chemical poses significant challenge. Highly efficient nickel aluminum spinel catalysts were fabricated by sol–gel method for the catalytic dehydrofluorination of HFC-134a. The effect of Ni/Al ratio in the NiAl2O4 spinel precursors on the performance of NiAl catalysts was studied by x-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscope (SEM), transmission electron microscopy (TEM), NH3-TPD, and XPS. Nickel–aluminum ratio in the nickel–aluminum spinel precursor plays a major role on the formation of strong acid and active species Ni-F-Al. With Ni/Al ratio of 4, the (3 1 1) crystal face of NiAl2O4 interfaced with the (1 1 1) crystal face of NiO and the (4 0 0) crystal face of NiAl2O4. This interaction facilitates the formation of Ni-F-Al active species following the dehydrofluorination reaction. Furthermore, the Ni-F-Al species altered the acid structure of NiAl catalysts. It was found that NiAl catalyst with a Ni/Al ratio of 4 has the best catalytic performance compared with other catalysts (with conversion of 35%), and no deactivation trend was observed after 50 h of time on stream. (Reaction conditions: N2/CF3CH2F = 10, T = 450°C, GHSV = 660 h−1).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Greenhouse Gases: Science and Technology
Greenhouse Gases: Science and Technology ENERGY & FUELS-ENGINEERING, ENVIRONMENTAL
CiteScore
4.90
自引率
4.50%
发文量
55
审稿时长
3 months
期刊介绍: Greenhouse Gases: Science and Technology is a new online-only scientific journal dedicated to the management of greenhouse gases. The journal will focus on methods for carbon capture and storage (CCS), as well as utilization of carbon dioxide (CO2) as a feedstock for fuels and chemicals. GHG will also provide insight into strategies to mitigate emissions of other greenhouse gases. Significant advances will be explored in critical reviews, commentary articles and short communications of broad interest. In addition, the journal will offer analyses of relevant economic and political issues, industry developments and case studies. Greenhouse Gases: Science and Technology is an exciting new online-only journal published as a co-operative venture of the SCI (Society of Chemical Industry) and John Wiley & Sons, Ltd
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信