Natasha Sekhon, Annabelle Gao, Soumen Mallick, Judson W. Partin, M. Bayani Cardenas, Daniel E. Ibarra
{"title":"利用LA-ICP-MS对热带洞穴样品进行基质和非基质、单点和多点微量元素校准","authors":"Natasha Sekhon, Annabelle Gao, Soumen Mallick, Judson W. Partin, M. Bayani Cardenas, Daniel E. Ibarra","doi":"10.1002/rcm.9983","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Rationale</h3>\n \n <p>Suites of trace elements are routinely used in speleothems as proxies to understand periods of past climate change. Laser ablation techniques are regularly implemented to acquire high resolution (50-μm) trace element concentrations in carbonate archives for paleoclimatology. There exists limited research investigating Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) protocols using speleothem samples. This study investigates the difference between using matrix (carbonate) and nonmatrix (silicate) matched reference materials and the utility of 1-point versus multiple point calibration curves.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Following an extensive review of published literature on speleothem LA-ICP-MS analyses, we conducted two laser ablation experimental runs 8 months apart on a 2.7-cm section of a natural speleothem using matrix and nonmatrix matched reference materials. We used a 193-nm wavelength Analyte G2 laser attached to a X-Series-2 ICP-MS, a silicate reference material, and three carbonate reference materials. Next, we calculated concentrations using a 1-point calibration curve, a 2-point calibration curve, and a 3-point calibration curve.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The analysis of matrix and nonmatrix matched reference materials demonstrates that the trends of trace elements/Ca are minimally impacted by the matrix material of the standard. We also show that 2- and 3-point calibration curves bracket the range of sample concentrations compared to a 1-point (silicate) calibration curve. The calculated cave-air temperatures using Mg/Ca concentrations fall within error of each other regardless of the calibration curve approach applied.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Our experiments provide a proof of concept on the conventional setup of standards during LA-ICP-MS speleothem analysis. We suggest the use of at minimum a 2-point (silicate plus carbonate or carbonates) calibration curve that crucially bracket the range of sample concentrations rather than relying on a 1-point silicate standard that does not bracket the sample concentration. Finally, our results have implications for both speleothem studies that use LA-ICP-MS analytical techniques and additional carbonate archives.</p>\n </section>\n </div>","PeriodicalId":225,"journal":{"name":"Rapid Communications in Mass Spectrometry","volume":"39 9","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing Matrix and Nonmatrix, Single, and Multipoint Calibration of Trace Elements Using LA-ICP-MS on a Tropical Speleothem\",\"authors\":\"Natasha Sekhon, Annabelle Gao, Soumen Mallick, Judson W. Partin, M. Bayani Cardenas, Daniel E. Ibarra\",\"doi\":\"10.1002/rcm.9983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Rationale</h3>\\n \\n <p>Suites of trace elements are routinely used in speleothems as proxies to understand periods of past climate change. Laser ablation techniques are regularly implemented to acquire high resolution (50-μm) trace element concentrations in carbonate archives for paleoclimatology. There exists limited research investigating Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) protocols using speleothem samples. This study investigates the difference between using matrix (carbonate) and nonmatrix (silicate) matched reference materials and the utility of 1-point versus multiple point calibration curves.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Following an extensive review of published literature on speleothem LA-ICP-MS analyses, we conducted two laser ablation experimental runs 8 months apart on a 2.7-cm section of a natural speleothem using matrix and nonmatrix matched reference materials. We used a 193-nm wavelength Analyte G2 laser attached to a X-Series-2 ICP-MS, a silicate reference material, and three carbonate reference materials. Next, we calculated concentrations using a 1-point calibration curve, a 2-point calibration curve, and a 3-point calibration curve.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>The analysis of matrix and nonmatrix matched reference materials demonstrates that the trends of trace elements/Ca are minimally impacted by the matrix material of the standard. We also show that 2- and 3-point calibration curves bracket the range of sample concentrations compared to a 1-point (silicate) calibration curve. The calculated cave-air temperatures using Mg/Ca concentrations fall within error of each other regardless of the calibration curve approach applied.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>Our experiments provide a proof of concept on the conventional setup of standards during LA-ICP-MS speleothem analysis. We suggest the use of at minimum a 2-point (silicate plus carbonate or carbonates) calibration curve that crucially bracket the range of sample concentrations rather than relying on a 1-point silicate standard that does not bracket the sample concentration. Finally, our results have implications for both speleothem studies that use LA-ICP-MS analytical techniques and additional carbonate archives.</p>\\n </section>\\n </div>\",\"PeriodicalId\":225,\"journal\":{\"name\":\"Rapid Communications in Mass Spectrometry\",\"volume\":\"39 9\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rapid Communications in Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/rcm.9983\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Communications in Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rcm.9983","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Assessing Matrix and Nonmatrix, Single, and Multipoint Calibration of Trace Elements Using LA-ICP-MS on a Tropical Speleothem
Rationale
Suites of trace elements are routinely used in speleothems as proxies to understand periods of past climate change. Laser ablation techniques are regularly implemented to acquire high resolution (50-μm) trace element concentrations in carbonate archives for paleoclimatology. There exists limited research investigating Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) protocols using speleothem samples. This study investigates the difference between using matrix (carbonate) and nonmatrix (silicate) matched reference materials and the utility of 1-point versus multiple point calibration curves.
Methods
Following an extensive review of published literature on speleothem LA-ICP-MS analyses, we conducted two laser ablation experimental runs 8 months apart on a 2.7-cm section of a natural speleothem using matrix and nonmatrix matched reference materials. We used a 193-nm wavelength Analyte G2 laser attached to a X-Series-2 ICP-MS, a silicate reference material, and three carbonate reference materials. Next, we calculated concentrations using a 1-point calibration curve, a 2-point calibration curve, and a 3-point calibration curve.
Results
The analysis of matrix and nonmatrix matched reference materials demonstrates that the trends of trace elements/Ca are minimally impacted by the matrix material of the standard. We also show that 2- and 3-point calibration curves bracket the range of sample concentrations compared to a 1-point (silicate) calibration curve. The calculated cave-air temperatures using Mg/Ca concentrations fall within error of each other regardless of the calibration curve approach applied.
Conclusions
Our experiments provide a proof of concept on the conventional setup of standards during LA-ICP-MS speleothem analysis. We suggest the use of at minimum a 2-point (silicate plus carbonate or carbonates) calibration curve that crucially bracket the range of sample concentrations rather than relying on a 1-point silicate standard that does not bracket the sample concentration. Finally, our results have implications for both speleothem studies that use LA-ICP-MS analytical techniques and additional carbonate archives.
期刊介绍:
Rapid Communications in Mass Spectrometry is a journal whose aim is the rapid publication of original research results and ideas on all aspects of the science of gas-phase ions; it covers all the associated scientific disciplines. There is no formal limit on paper length ("rapid" is not synonymous with "brief"), but papers should be of a length that is commensurate with the importance and complexity of the results being reported. Contributions may be theoretical or practical in nature; they may deal with methods, techniques and applications, or with the interpretation of results; they may cover any area in science that depends directly on measurements made upon gaseous ions or that is associated with such measurements.