肺炎感染诊断的深度学习和x射线成像创新:介绍deepneunet

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Sanjay Chakraborty, Tirthajyoti Nag, Saroj Kumar Pandey, Jayasree Ghosh, Lopamudra Dey
{"title":"肺炎感染诊断的深度学习和x射线成像创新:介绍deepneunet","authors":"Sanjay Chakraborty,&nbsp;Tirthajyoti Nag,&nbsp;Saroj Kumar Pandey,&nbsp;Jayasree Ghosh,&nbsp;Lopamudra Dey","doi":"10.1111/coin.70029","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper aims to develop a new deep learning model (DeepPneuNet) and evaluate its performance in predicting Pneumonia infection diagnosis based on patients' chest x-ray images. We have collected 5856 chest x-ray images that are labeled as either “pneumonia” or “normal” from a public forum. Before applying the DeepPneuNet model, a necessary feature extraction and feature mapping have been done on the input images. Conv2D layers with a 1 × 1 kernel size are followed by ReLU activation functions to make up the model. These layers are in charge of recognizing important patterns and features in the images. A MaxPooling 2D procedure is applied to minimize the spatial size of the feature maps after every two Conv2D layers. The sparse categorical cross-entropy loss function trains the model, and the Adam optimizer with a learning rate of 0.001 is used to optimize it. The DeepPneuNet provides 90.12% accuracy for diagnosis of the Pneumonia infection for a set of real-life test images. With 9,445,586 parameters, the DeepPneuNet model exhibits excellent parameter efficiency. DeepPneuNet is a more lightweight and computationally efficient alternative when compared to the other pre-trained models. We have compared accuracies for predicting Pneumonia diagnosis of our proposed DeepPneuNet model with some state-of-the-art deep learning models. The proposed DeepPneuNet model is more advantageous than the existing state-of-the-art learning models for Pneumonia diagnosis with respect to accuracy, precision, recall, <i>F</i>-score, training parameters, and training execution time.</p>\n </div>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"41 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning and X-Ray Imaging Innovations for Pneumonia Infection Diagnosis: Introducing DeepPneuNet\",\"authors\":\"Sanjay Chakraborty,&nbsp;Tirthajyoti Nag,&nbsp;Saroj Kumar Pandey,&nbsp;Jayasree Ghosh,&nbsp;Lopamudra Dey\",\"doi\":\"10.1111/coin.70029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This paper aims to develop a new deep learning model (DeepPneuNet) and evaluate its performance in predicting Pneumonia infection diagnosis based on patients' chest x-ray images. We have collected 5856 chest x-ray images that are labeled as either “pneumonia” or “normal” from a public forum. Before applying the DeepPneuNet model, a necessary feature extraction and feature mapping have been done on the input images. Conv2D layers with a 1 × 1 kernel size are followed by ReLU activation functions to make up the model. These layers are in charge of recognizing important patterns and features in the images. A MaxPooling 2D procedure is applied to minimize the spatial size of the feature maps after every two Conv2D layers. The sparse categorical cross-entropy loss function trains the model, and the Adam optimizer with a learning rate of 0.001 is used to optimize it. The DeepPneuNet provides 90.12% accuracy for diagnosis of the Pneumonia infection for a set of real-life test images. With 9,445,586 parameters, the DeepPneuNet model exhibits excellent parameter efficiency. DeepPneuNet is a more lightweight and computationally efficient alternative when compared to the other pre-trained models. We have compared accuracies for predicting Pneumonia diagnosis of our proposed DeepPneuNet model with some state-of-the-art deep learning models. The proposed DeepPneuNet model is more advantageous than the existing state-of-the-art learning models for Pneumonia diagnosis with respect to accuracy, precision, recall, <i>F</i>-score, training parameters, and training execution time.</p>\\n </div>\",\"PeriodicalId\":55228,\"journal\":{\"name\":\"Computational Intelligence\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/coin.70029\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.70029","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在开发一种新的深度学习模型(DeepPneuNet),并评估其在基于患者胸部x线图像的肺炎感染诊断预测中的性能。我们从公共论坛收集了5856张胸片,这些胸片被标记为“肺炎”或“正常”。在应用deepneunet模型之前,对输入图像进行必要的特征提取和特征映射。内核大小为1 × 1的Conv2D层之后是ReLU激活函数组成模型。这些层负责识别图像中的重要模式和特征。在每两个Conv2D层之后,应用MaxPooling 2D过程最小化特征图的空间大小。使用稀疏分类交叉熵损失函数训练模型,并使用学习率为0.001的Adam优化器对模型进行优化。deepneunet对一组真实测试图像的肺炎感染诊断准确率为90.12%。deepneunet模型具有9,445,586个参数,具有良好的参数效率。与其他预训练模型相比,deepneunet是一种更轻量、计算效率更高的替代方案。我们比较了我们提出的deepneunet模型与一些最先进的深度学习模型预测肺炎诊断的准确性。所提出的deepneunet模型在准确性、精密度、召回率、f分数、训练参数和训练执行时间等方面比现有的肺炎诊断学习模型更有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning and X-Ray Imaging Innovations for Pneumonia Infection Diagnosis: Introducing DeepPneuNet

This paper aims to develop a new deep learning model (DeepPneuNet) and evaluate its performance in predicting Pneumonia infection diagnosis based on patients' chest x-ray images. We have collected 5856 chest x-ray images that are labeled as either “pneumonia” or “normal” from a public forum. Before applying the DeepPneuNet model, a necessary feature extraction and feature mapping have been done on the input images. Conv2D layers with a 1 × 1 kernel size are followed by ReLU activation functions to make up the model. These layers are in charge of recognizing important patterns and features in the images. A MaxPooling 2D procedure is applied to minimize the spatial size of the feature maps after every two Conv2D layers. The sparse categorical cross-entropy loss function trains the model, and the Adam optimizer with a learning rate of 0.001 is used to optimize it. The DeepPneuNet provides 90.12% accuracy for diagnosis of the Pneumonia infection for a set of real-life test images. With 9,445,586 parameters, the DeepPneuNet model exhibits excellent parameter efficiency. DeepPneuNet is a more lightweight and computationally efficient alternative when compared to the other pre-trained models. We have compared accuracies for predicting Pneumonia diagnosis of our proposed DeepPneuNet model with some state-of-the-art deep learning models. The proposed DeepPneuNet model is more advantageous than the existing state-of-the-art learning models for Pneumonia diagnosis with respect to accuracy, precision, recall, F-score, training parameters, and training execution time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Intelligence
Computational Intelligence 工程技术-计算机:人工智能
CiteScore
6.90
自引率
3.60%
发文量
65
审稿时长
>12 weeks
期刊介绍: This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信