汽车车身辐照分布的不均匀性

IF 8 2区 材料科学 Q1 ENERGY & FUELS
Evgenii Sovetkin, Michael Gordon, Neel Patel, Andreas Gerber, Angèle Reinders, Robby Peibst, Bart E. Pieters
{"title":"汽车车身辐照分布的不均匀性","authors":"Evgenii Sovetkin,&nbsp;Michael Gordon,&nbsp;Neel Patel,&nbsp;Andreas Gerber,&nbsp;Angèle Reinders,&nbsp;Robby Peibst,&nbsp;Bart E. Pieters","doi":"10.1002/pip.3876","DOIUrl":null,"url":null,"abstract":"<p>Nonuniformity of irradiation in photovoltaic (PV) modules causes a current mismatch in the cells, which leads to energy losses. In the context of vehicle-integrated PV (VIPV), the nonuniformity is typically studied for the self-shading effect caused by the curvature of modules. This study uncovers the impact of topography on the distribution of sunlight on vehicle surfaces, focusing on two distinct scenarios: the flat-surface cargo area of a small delivery truck and the entire body of a commercial passenger vehicle. We employ a commuter pattern driving profile in Germany and a broader analysis incorporating random sampling of various road types and locations across 17,000 km<sup>2</sup> in Europe and 59,000 km<sup>2</sup> in the United States using LIDAR-derived topography and OpenStreetMap data. Our findings quantify irradiation inhomogeneity patterns shaped by the geographic landscape, road configurations, urban planning, and vegetation. The research identifies topography as the primary factor affecting irradiation distribution uniformity, with the vehicle's surface orientation and curvature serving as secondary influencers. The most significant variation occurs on vertical surfaces of the vehicle in residential areas, with the lower parts receiving up to 35% less irradiation than the top part of the car. These insights may be used to improve the design and efficiency of vehicle-integrated photovoltaic systems, optimizing energy capture in diverse environmental conditions.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 3","pages":"489-505"},"PeriodicalIF":8.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3876","citationCount":"0","resultStr":"{\"title\":\"Nonuniformity of Irradiation Distribution on Vehicles' Bodies\",\"authors\":\"Evgenii Sovetkin,&nbsp;Michael Gordon,&nbsp;Neel Patel,&nbsp;Andreas Gerber,&nbsp;Angèle Reinders,&nbsp;Robby Peibst,&nbsp;Bart E. Pieters\",\"doi\":\"10.1002/pip.3876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nonuniformity of irradiation in photovoltaic (PV) modules causes a current mismatch in the cells, which leads to energy losses. In the context of vehicle-integrated PV (VIPV), the nonuniformity is typically studied for the self-shading effect caused by the curvature of modules. This study uncovers the impact of topography on the distribution of sunlight on vehicle surfaces, focusing on two distinct scenarios: the flat-surface cargo area of a small delivery truck and the entire body of a commercial passenger vehicle. We employ a commuter pattern driving profile in Germany and a broader analysis incorporating random sampling of various road types and locations across 17,000 km<sup>2</sup> in Europe and 59,000 km<sup>2</sup> in the United States using LIDAR-derived topography and OpenStreetMap data. Our findings quantify irradiation inhomogeneity patterns shaped by the geographic landscape, road configurations, urban planning, and vegetation. The research identifies topography as the primary factor affecting irradiation distribution uniformity, with the vehicle's surface orientation and curvature serving as secondary influencers. The most significant variation occurs on vertical surfaces of the vehicle in residential areas, with the lower parts receiving up to 35% less irradiation than the top part of the car. These insights may be used to improve the design and efficiency of vehicle-integrated photovoltaic systems, optimizing energy capture in diverse environmental conditions.</p>\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"33 3\",\"pages\":\"489-505\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3876\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pip.3876\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3876","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

光伏(PV)组件中辐照的不均匀性会导致电池中的电流失配,从而导致能量损失。在车载集成光伏(VIPV)系统中,主要针对组件曲率引起的自遮阳效应进行非均匀性研究。这项研究揭示了地形对车辆表面阳光分布的影响,重点关注两种不同的场景:小型货车的平坦货物区域和商用乘用车的整个车身。我们采用了德国的通勤模式驾驶概况,并采用激光雷达提取的地形和OpenStreetMap数据,对欧洲17,000平方公里和美国59,000平方公里的各种道路类型和位置进行了更广泛的随机抽样分析。我们的研究结果量化了受地理景观、道路配置、城市规划和植被影响的辐照不均匀性模式。研究发现,地形是影响辐照分布均匀性的主要因素,车辆表面朝向和曲率是次要影响因素。在居民区,最显著的变化发生在车辆的垂直表面,较低部分受到的辐射比汽车顶部少35%。这些见解可用于改进车辆集成光伏系统的设计和效率,优化不同环境条件下的能量捕获。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nonuniformity of Irradiation Distribution on Vehicles' Bodies

Nonuniformity of Irradiation Distribution on Vehicles' Bodies

Nonuniformity of irradiation in photovoltaic (PV) modules causes a current mismatch in the cells, which leads to energy losses. In the context of vehicle-integrated PV (VIPV), the nonuniformity is typically studied for the self-shading effect caused by the curvature of modules. This study uncovers the impact of topography on the distribution of sunlight on vehicle surfaces, focusing on two distinct scenarios: the flat-surface cargo area of a small delivery truck and the entire body of a commercial passenger vehicle. We employ a commuter pattern driving profile in Germany and a broader analysis incorporating random sampling of various road types and locations across 17,000 km2 in Europe and 59,000 km2 in the United States using LIDAR-derived topography and OpenStreetMap data. Our findings quantify irradiation inhomogeneity patterns shaped by the geographic landscape, road configurations, urban planning, and vegetation. The research identifies topography as the primary factor affecting irradiation distribution uniformity, with the vehicle's surface orientation and curvature serving as secondary influencers. The most significant variation occurs on vertical surfaces of the vehicle in residential areas, with the lower parts receiving up to 35% less irradiation than the top part of the car. These insights may be used to improve the design and efficiency of vehicle-integrated photovoltaic systems, optimizing energy capture in diverse environmental conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Photovoltaics
Progress in Photovoltaics 工程技术-能源与燃料
CiteScore
18.10
自引率
7.50%
发文量
130
审稿时长
5.4 months
期刊介绍: Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers. The key criterion is that all papers submitted should report substantial “progress” in photovoltaics. Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables. Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信