基于阿基米德优化算法的云多目标工作流调度

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Shweta Kushwaha, Ravi Shankar Singh, Kanika Prajapati
{"title":"基于阿基米德优化算法的云多目标工作流调度","authors":"Shweta Kushwaha,&nbsp;Ravi Shankar Singh,&nbsp;Kanika Prajapati","doi":"10.1002/cpe.8393","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Cloud computing has changed the technology landscape for over a decade and led to an astounding growth in the number of applications it may be used for. Consequently, there has been a significant spike in the demand for improved algorithms to schedule workflows efficiently. These were mostly concerned with heuristic, metaheuristic, and hybrid approaches to workflow scheduling that mostly suffer from the problem of local optima entrapment. Due to such heavy traffic on the cloud resources, there is still a need for less computationally complex approaches. In light of this, this article proposes a novel approach: a multi-objective Modified Local Escaping Archimedes Optimization (MLEAO) algorithm for workflow scheduling. This strategy involves initialization of the population of Archimedes Optimization algorithm through the HEFT algorithm to provide an inclination towards the solutions with improved makespan while achieving a cost-efficient workflow scheduling decision and avoiding the problem of local optima entrapment using a local escaping operation. To validate the efficacy of our approach, we conducted extensive experiments using scientific workflows as benchmarks. Through our investigations, we significantly improved makespan, cost, resource utilization, and energy consumption. Moreover, the effectiveness of our proposed approach is also verified by performance metrics such as hypervolume, s-metric, and dominance relationships between the proposed and state-of-the-art approaches.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"37 4-5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Objective Workflow Scheduling in Cloud Using Archimedes Optimization Algorithm\",\"authors\":\"Shweta Kushwaha,&nbsp;Ravi Shankar Singh,&nbsp;Kanika Prajapati\",\"doi\":\"10.1002/cpe.8393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Cloud computing has changed the technology landscape for over a decade and led to an astounding growth in the number of applications it may be used for. Consequently, there has been a significant spike in the demand for improved algorithms to schedule workflows efficiently. These were mostly concerned with heuristic, metaheuristic, and hybrid approaches to workflow scheduling that mostly suffer from the problem of local optima entrapment. Due to such heavy traffic on the cloud resources, there is still a need for less computationally complex approaches. In light of this, this article proposes a novel approach: a multi-objective Modified Local Escaping Archimedes Optimization (MLEAO) algorithm for workflow scheduling. This strategy involves initialization of the population of Archimedes Optimization algorithm through the HEFT algorithm to provide an inclination towards the solutions with improved makespan while achieving a cost-efficient workflow scheduling decision and avoiding the problem of local optima entrapment using a local escaping operation. To validate the efficacy of our approach, we conducted extensive experiments using scientific workflows as benchmarks. Through our investigations, we significantly improved makespan, cost, resource utilization, and energy consumption. Moreover, the effectiveness of our proposed approach is also verified by performance metrics such as hypervolume, s-metric, and dominance relationships between the proposed and state-of-the-art approaches.</p>\\n </div>\",\"PeriodicalId\":55214,\"journal\":{\"name\":\"Concurrency and Computation-Practice & Experience\",\"volume\":\"37 4-5\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concurrency and Computation-Practice & Experience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8393\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8393","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

十多年来,云计算已经改变了技术领域,并导致了应用程序数量的惊人增长。因此,对改进算法的需求大幅增加,以有效地调度工作流。这些主要涉及启发式、元启发式和混合的工作流调度方法,这些方法大多受到局部最优捕获问题的困扰。由于云资源上如此大的流量,仍然需要计算复杂度较低的方法。鉴于此,本文提出了一种新的工作流调度方法:多目标修正局部转义阿基米德优化算法。该策略包括通过HEFT算法初始化阿基米德优化算法的种群,以提供倾向于具有改进最大跨度的解决方案,同时实现经济高效的工作流调度决策,并避免使用局部转义操作的局部最优捕获问题。为了验证我们方法的有效性,我们使用科学工作流程作为基准进行了广泛的实验。通过调研,显著提高了完工时间、成本、资源利用率和能耗。此外,我们提出的方法的有效性也通过性能指标(如hypervolume, s-metric)和所提出的方法与最先进方法之间的优势关系来验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Objective Workflow Scheduling in Cloud Using Archimedes Optimization Algorithm

Cloud computing has changed the technology landscape for over a decade and led to an astounding growth in the number of applications it may be used for. Consequently, there has been a significant spike in the demand for improved algorithms to schedule workflows efficiently. These were mostly concerned with heuristic, metaheuristic, and hybrid approaches to workflow scheduling that mostly suffer from the problem of local optima entrapment. Due to such heavy traffic on the cloud resources, there is still a need for less computationally complex approaches. In light of this, this article proposes a novel approach: a multi-objective Modified Local Escaping Archimedes Optimization (MLEAO) algorithm for workflow scheduling. This strategy involves initialization of the population of Archimedes Optimization algorithm through the HEFT algorithm to provide an inclination towards the solutions with improved makespan while achieving a cost-efficient workflow scheduling decision and avoiding the problem of local optima entrapment using a local escaping operation. To validate the efficacy of our approach, we conducted extensive experiments using scientific workflows as benchmarks. Through our investigations, we significantly improved makespan, cost, resource utilization, and energy consumption. Moreover, the effectiveness of our proposed approach is also verified by performance metrics such as hypervolume, s-metric, and dominance relationships between the proposed and state-of-the-art approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Concurrency and Computation-Practice & Experience
Concurrency and Computation-Practice & Experience 工程技术-计算机:理论方法
CiteScore
5.00
自引率
10.00%
发文量
664
审稿时长
9.6 months
期刊介绍: Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of: Parallel and distributed computing; High-performance computing; Computational and data science; Artificial intelligence and machine learning; Big data applications, algorithms, and systems; Network science; Ontologies and semantics; Security and privacy; Cloud/edge/fog computing; Green computing; and Quantum computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信