数据不平衡量化

IF 2.3 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Expert Systems Pub Date : 2025-02-09 DOI:10.1111/exsy.13840
Jelke Wibbeke, Sebastian Rohjans, Andreas Rauh
{"title":"数据不平衡量化","authors":"Jelke Wibbeke,&nbsp;Sebastian Rohjans,&nbsp;Andreas Rauh","doi":"10.1111/exsy.13840","DOIUrl":null,"url":null,"abstract":"<p>In this article, we propose a novel approach to quantify the imbalance in data, addressing a significant gap in the field of regression analysis. Real-world datasets often exhibit an inherent imbalance in their data distribution, which adversely affects learning algorithms such as those used in neural networks. This results in less accurate learning of rare occurrences and a model bias towards more frequent cases, posing challenges in scenarios where rare events are crucial, like energy load prediction. While many solutions exist for classification problems with imbalanced data, regression problems lack adequate research. To address this, we introduce a method to quantify data imbalance by defining it as the disparity between the probability distribution of the data and a relevance-associated distribution. Our approach includes various metrics that can handle multivariate data, allowing for the identification of imbalanced samples and the abstract quantification of imbalance through the mean imbalance ratio. This method facilitates the comparison of regression datasets based on their imbalance, providing insights into dataset quality and evaluating data resampling techniques. We validate our approach using synthetic data and compare it to established metrics such as the Kullback–Leibler divergence and the Wasserstein metric. Furthermore, analysis of real datasets shows a moderate correlation between sample rarity and the approximation error of neural networks, extreme gradient boosting trees and random forests, indicating that underrepresented samples are linked to higher approximation errors.</p>","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"42 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/exsy.13840","citationCount":"0","resultStr":"{\"title\":\"Quantification of Data Imbalance\",\"authors\":\"Jelke Wibbeke,&nbsp;Sebastian Rohjans,&nbsp;Andreas Rauh\",\"doi\":\"10.1111/exsy.13840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we propose a novel approach to quantify the imbalance in data, addressing a significant gap in the field of regression analysis. Real-world datasets often exhibit an inherent imbalance in their data distribution, which adversely affects learning algorithms such as those used in neural networks. This results in less accurate learning of rare occurrences and a model bias towards more frequent cases, posing challenges in scenarios where rare events are crucial, like energy load prediction. While many solutions exist for classification problems with imbalanced data, regression problems lack adequate research. To address this, we introduce a method to quantify data imbalance by defining it as the disparity between the probability distribution of the data and a relevance-associated distribution. Our approach includes various metrics that can handle multivariate data, allowing for the identification of imbalanced samples and the abstract quantification of imbalance through the mean imbalance ratio. This method facilitates the comparison of regression datasets based on their imbalance, providing insights into dataset quality and evaluating data resampling techniques. We validate our approach using synthetic data and compare it to established metrics such as the Kullback–Leibler divergence and the Wasserstein metric. Furthermore, analysis of real datasets shows a moderate correlation between sample rarity and the approximation error of neural networks, extreme gradient boosting trees and random forests, indicating that underrepresented samples are linked to higher approximation errors.</p>\",\"PeriodicalId\":51053,\"journal\":{\"name\":\"Expert Systems\",\"volume\":\"42 3\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/exsy.13840\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/exsy.13840\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/exsy.13840","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种新的方法来量化数据的不平衡,解决了回归分析领域的一个重大空白。现实世界的数据集通常在数据分布中表现出固有的不平衡,这对神经网络中使用的学习算法产生了不利影响。这导致对罕见事件的学习不太准确,并且模型偏向于更频繁的情况,在罕见事件至关重要的情况下(如能源负荷预测)提出了挑战。对于数据不平衡的分类问题,已有很多解决方案,但对回归问题的研究还不够。为了解决这个问题,我们引入了一种量化数据不平衡的方法,将其定义为数据概率分布与相关性相关分布之间的差异。我们的方法包括可以处理多变量数据的各种度量,允许不平衡样本的识别和通过平均不平衡比率对不平衡进行抽象量化。这种方法有助于基于不平衡的回归数据集的比较,提供对数据集质量和评估数据重采样技术的见解。我们使用合成数据验证我们的方法,并将其与既定指标(如Kullback-Leibler散度和Wasserstein指标)进行比较。此外,对真实数据集的分析表明,样本稀缺性与神经网络、极端梯度增强树和随机森林的近似误差之间存在适度的相关性,这表明代表性不足的样本与较高的近似误差有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quantification of Data Imbalance

Quantification of Data Imbalance

In this article, we propose a novel approach to quantify the imbalance in data, addressing a significant gap in the field of regression analysis. Real-world datasets often exhibit an inherent imbalance in their data distribution, which adversely affects learning algorithms such as those used in neural networks. This results in less accurate learning of rare occurrences and a model bias towards more frequent cases, posing challenges in scenarios where rare events are crucial, like energy load prediction. While many solutions exist for classification problems with imbalanced data, regression problems lack adequate research. To address this, we introduce a method to quantify data imbalance by defining it as the disparity between the probability distribution of the data and a relevance-associated distribution. Our approach includes various metrics that can handle multivariate data, allowing for the identification of imbalanced samples and the abstract quantification of imbalance through the mean imbalance ratio. This method facilitates the comparison of regression datasets based on their imbalance, providing insights into dataset quality and evaluating data resampling techniques. We validate our approach using synthetic data and compare it to established metrics such as the Kullback–Leibler divergence and the Wasserstein metric. Furthermore, analysis of real datasets shows a moderate correlation between sample rarity and the approximation error of neural networks, extreme gradient boosting trees and random forests, indicating that underrepresented samples are linked to higher approximation errors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Expert Systems
Expert Systems 工程技术-计算机:理论方法
CiteScore
7.40
自引率
6.10%
发文量
266
审稿时长
24 months
期刊介绍: Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper. As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信