{"title":"气相色谱-燃烧-同位素比质谱法测定土壤中六磷酸肌醇(植酸)碳同位素组成的新方法","authors":"V. Sarangi, M. Spohn","doi":"10.1002/rcm.9998","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Rationale</h3>\n \n <p>Understanding the decomposition of inositol hexaphosphate (phytate), the dominant form of organic phosphorus (OP) in soil, is vital for studying phosphorus (P) cycling in terrestrial ecosystems. However, the lack of multiple stable P isotopes complicates the study of phytate dynamics under natural conditions and over long periods.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>A novel method is presented to determine the carbon isotopic composition of inositol in phytate using compound-specific isotope analysis. For this purpose, phytate was extracted from soil and purified via ion exchange chromatography, followed by dephosphorylation, derivatization, and analysis using GC-MS and GC-C-IRMS. Pure compounds were also analyzed to assess protocol efficiency, identify isotopic fractionations, and apply isotopic corrections due to derivatization.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Phytate extracted from soil samples was identified using GC-MS chromatograms. Replicate analyses of the pure compounds indicated that the protocol is highly reproducible. The carbon isotopic composition (δ<sup>13</sup>C) showed a high reproducibility, with values varying by less than 0.5‰ and with no detectable isotopic fractionation during sample preparation. The δ<sup>13</sup>C values of phytate in soil samples reflected the dominant vegetation type (C<sub>3</sub> or C<sub>4</sub>) growing at the study site.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>This study offers a novel approach of determining δ<sup>13</sup>C values of inositol of phytate in environmental samples, offering new opportunities to investigate and quantify OP dynamics based on stable carbon isotopes.</p>\n </section>\n </div>","PeriodicalId":225,"journal":{"name":"Rapid Communications in Mass Spectrometry","volume":"39 9","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/rcm.9998","citationCount":"0","resultStr":"{\"title\":\"A Novel Method to Determine the Carbon Isotopic Composition of Inositol Hexaphosphate (Phytate) in Soil by Gas Chromatography–Combustion–Isotope Ratio Mass Spectrometry\",\"authors\":\"V. Sarangi, M. Spohn\",\"doi\":\"10.1002/rcm.9998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Rationale</h3>\\n \\n <p>Understanding the decomposition of inositol hexaphosphate (phytate), the dominant form of organic phosphorus (OP) in soil, is vital for studying phosphorus (P) cycling in terrestrial ecosystems. However, the lack of multiple stable P isotopes complicates the study of phytate dynamics under natural conditions and over long periods.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>A novel method is presented to determine the carbon isotopic composition of inositol in phytate using compound-specific isotope analysis. For this purpose, phytate was extracted from soil and purified via ion exchange chromatography, followed by dephosphorylation, derivatization, and analysis using GC-MS and GC-C-IRMS. Pure compounds were also analyzed to assess protocol efficiency, identify isotopic fractionations, and apply isotopic corrections due to derivatization.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Phytate extracted from soil samples was identified using GC-MS chromatograms. Replicate analyses of the pure compounds indicated that the protocol is highly reproducible. The carbon isotopic composition (δ<sup>13</sup>C) showed a high reproducibility, with values varying by less than 0.5‰ and with no detectable isotopic fractionation during sample preparation. The δ<sup>13</sup>C values of phytate in soil samples reflected the dominant vegetation type (C<sub>3</sub> or C<sub>4</sub>) growing at the study site.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>This study offers a novel approach of determining δ<sup>13</sup>C values of inositol of phytate in environmental samples, offering new opportunities to investigate and quantify OP dynamics based on stable carbon isotopes.</p>\\n </section>\\n </div>\",\"PeriodicalId\":225,\"journal\":{\"name\":\"Rapid Communications in Mass Spectrometry\",\"volume\":\"39 9\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/rcm.9998\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rapid Communications in Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/rcm.9998\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Communications in Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rcm.9998","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A Novel Method to Determine the Carbon Isotopic Composition of Inositol Hexaphosphate (Phytate) in Soil by Gas Chromatography–Combustion–Isotope Ratio Mass Spectrometry
Rationale
Understanding the decomposition of inositol hexaphosphate (phytate), the dominant form of organic phosphorus (OP) in soil, is vital for studying phosphorus (P) cycling in terrestrial ecosystems. However, the lack of multiple stable P isotopes complicates the study of phytate dynamics under natural conditions and over long periods.
Methods
A novel method is presented to determine the carbon isotopic composition of inositol in phytate using compound-specific isotope analysis. For this purpose, phytate was extracted from soil and purified via ion exchange chromatography, followed by dephosphorylation, derivatization, and analysis using GC-MS and GC-C-IRMS. Pure compounds were also analyzed to assess protocol efficiency, identify isotopic fractionations, and apply isotopic corrections due to derivatization.
Results
Phytate extracted from soil samples was identified using GC-MS chromatograms. Replicate analyses of the pure compounds indicated that the protocol is highly reproducible. The carbon isotopic composition (δ13C) showed a high reproducibility, with values varying by less than 0.5‰ and with no detectable isotopic fractionation during sample preparation. The δ13C values of phytate in soil samples reflected the dominant vegetation type (C3 or C4) growing at the study site.
Conclusions
This study offers a novel approach of determining δ13C values of inositol of phytate in environmental samples, offering new opportunities to investigate and quantify OP dynamics based on stable carbon isotopes.
期刊介绍:
Rapid Communications in Mass Spectrometry is a journal whose aim is the rapid publication of original research results and ideas on all aspects of the science of gas-phase ions; it covers all the associated scientific disciplines. There is no formal limit on paper length ("rapid" is not synonymous with "brief"), but papers should be of a length that is commensurate with the importance and complexity of the results being reported. Contributions may be theoretical or practical in nature; they may deal with methods, techniques and applications, or with the interpretation of results; they may cover any area in science that depends directly on measurements made upon gaseous ions or that is associated with such measurements.