{"title":"白质结构连接与阿尔茨海默病:一项孟德尔随机研究","authors":"Siyu Liu, Daoying Geng","doi":"10.1002/brb3.70286","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Alzheimer's disease (AD) and white-matter structural connectivity have been linked in some observational studies, although it is unknown if this is a causal relationship. The purpose of this study was to examine the impact of various white-matter structural connectivity on AD via a two-sample multivariate Mendelian randomization (MR) approach.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>The genome-wide association study (GWAS) of Wainberg et al. provided the summary data on white-matter structural connectivity, and Bellenguez et al.’s study provided the GWAS aggregated data for AD. MR methods included inverse variance weighted, Mendelian randomization Egger, simple mode, weighted median, and weighted mode. Heterogeneity, horizontal pleiotropy, and “leave-one-out” analysis guaranteed the robustness of causation. Finally, reverse MR analysis was conducted on the white-matter structural connectivity that showed positive results in the forward MR analysis.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Among 206 white-matter structural connections, we identified 10 connections were strongly correlated with genetic susceptibility to AD. Right-hemisphere limbic network to thalamus white-matter structural connectivity and Right-hemisphere salience_ventral attention network to accumbens white-matter structural connectivity were positively correlated with the likelihood of AD, while the remaining 8 white-matter structural connections were negatively related with AD. None of the above 10 white-matter structural connections have a reverse causal relationship with AD.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Our MR study reveals a certain degree of association between white-matter structural connectivity and AD, which may provide support for future diagnosis and treatment of AD.</p>\n </section>\n </div>","PeriodicalId":9081,"journal":{"name":"Brain and Behavior","volume":"15 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brb3.70286","citationCount":"0","resultStr":"{\"title\":\"White-Matter Structural Connectivity and Alzheimer's Disease: A Mendelian Randomization Study\",\"authors\":\"Siyu Liu, Daoying Geng\",\"doi\":\"10.1002/brb3.70286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Alzheimer's disease (AD) and white-matter structural connectivity have been linked in some observational studies, although it is unknown if this is a causal relationship. The purpose of this study was to examine the impact of various white-matter structural connectivity on AD via a two-sample multivariate Mendelian randomization (MR) approach.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>The genome-wide association study (GWAS) of Wainberg et al. provided the summary data on white-matter structural connectivity, and Bellenguez et al.’s study provided the GWAS aggregated data for AD. MR methods included inverse variance weighted, Mendelian randomization Egger, simple mode, weighted median, and weighted mode. Heterogeneity, horizontal pleiotropy, and “leave-one-out” analysis guaranteed the robustness of causation. Finally, reverse MR analysis was conducted on the white-matter structural connectivity that showed positive results in the forward MR analysis.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Among 206 white-matter structural connections, we identified 10 connections were strongly correlated with genetic susceptibility to AD. Right-hemisphere limbic network to thalamus white-matter structural connectivity and Right-hemisphere salience_ventral attention network to accumbens white-matter structural connectivity were positively correlated with the likelihood of AD, while the remaining 8 white-matter structural connections were negatively related with AD. None of the above 10 white-matter structural connections have a reverse causal relationship with AD.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>Our MR study reveals a certain degree of association between white-matter structural connectivity and AD, which may provide support for future diagnosis and treatment of AD.</p>\\n </section>\\n </div>\",\"PeriodicalId\":9081,\"journal\":{\"name\":\"Brain and Behavior\",\"volume\":\"15 2\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brb3.70286\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain and Behavior\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/brb3.70286\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain and Behavior","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/brb3.70286","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
White-Matter Structural Connectivity and Alzheimer's Disease: A Mendelian Randomization Study
Background
Alzheimer's disease (AD) and white-matter structural connectivity have been linked in some observational studies, although it is unknown if this is a causal relationship. The purpose of this study was to examine the impact of various white-matter structural connectivity on AD via a two-sample multivariate Mendelian randomization (MR) approach.
Methods
The genome-wide association study (GWAS) of Wainberg et al. provided the summary data on white-matter structural connectivity, and Bellenguez et al.’s study provided the GWAS aggregated data for AD. MR methods included inverse variance weighted, Mendelian randomization Egger, simple mode, weighted median, and weighted mode. Heterogeneity, horizontal pleiotropy, and “leave-one-out” analysis guaranteed the robustness of causation. Finally, reverse MR analysis was conducted on the white-matter structural connectivity that showed positive results in the forward MR analysis.
Results
Among 206 white-matter structural connections, we identified 10 connections were strongly correlated with genetic susceptibility to AD. Right-hemisphere limbic network to thalamus white-matter structural connectivity and Right-hemisphere salience_ventral attention network to accumbens white-matter structural connectivity were positively correlated with the likelihood of AD, while the remaining 8 white-matter structural connections were negatively related with AD. None of the above 10 white-matter structural connections have a reverse causal relationship with AD.
Conclusion
Our MR study reveals a certain degree of association between white-matter structural connectivity and AD, which may provide support for future diagnosis and treatment of AD.
期刊介绍:
Brain and Behavior is supported by other journals published by Wiley, including a number of society-owned journals. The journals listed below support Brain and Behavior and participate in the Manuscript Transfer Program by referring articles of suitable quality and offering authors the option to have their paper, with any peer review reports, automatically transferred to Brain and Behavior.
* [Acta Psychiatrica Scandinavica](https://publons.com/journal/1366/acta-psychiatrica-scandinavica)
* [Addiction Biology](https://publons.com/journal/1523/addiction-biology)
* [Aggressive Behavior](https://publons.com/journal/3611/aggressive-behavior)
* [Brain Pathology](https://publons.com/journal/1787/brain-pathology)
* [Child: Care, Health and Development](https://publons.com/journal/6111/child-care-health-and-development)
* [Criminal Behaviour and Mental Health](https://publons.com/journal/3839/criminal-behaviour-and-mental-health)
* [Depression and Anxiety](https://publons.com/journal/1528/depression-and-anxiety)
* Developmental Neurobiology
* [Developmental Science](https://publons.com/journal/1069/developmental-science)
* [European Journal of Neuroscience](https://publons.com/journal/1441/european-journal-of-neuroscience)
* [Genes, Brain and Behavior](https://publons.com/journal/1635/genes-brain-and-behavior)
* [GLIA](https://publons.com/journal/1287/glia)
* [Hippocampus](https://publons.com/journal/1056/hippocampus)
* [Human Brain Mapping](https://publons.com/journal/500/human-brain-mapping)
* [Journal for the Theory of Social Behaviour](https://publons.com/journal/7330/journal-for-the-theory-of-social-behaviour)
* [Journal of Comparative Neurology](https://publons.com/journal/1306/journal-of-comparative-neurology)
* [Journal of Neuroimaging](https://publons.com/journal/6379/journal-of-neuroimaging)
* [Journal of Neuroscience Research](https://publons.com/journal/2778/journal-of-neuroscience-research)
* [Journal of Organizational Behavior](https://publons.com/journal/1123/journal-of-organizational-behavior)
* [Journal of the Peripheral Nervous System](https://publons.com/journal/3929/journal-of-the-peripheral-nervous-system)
* [Muscle & Nerve](https://publons.com/journal/4448/muscle-and-nerve)
* [Neural Pathology and Applied Neurobiology](https://publons.com/journal/2401/neuropathology-and-applied-neurobiology)