美拉德反应中多种食品加工污染物的联合控制:健康风险与预防综合综述

IF 12 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Fan Zhang, Xiaomei Yu, Yimei Tian, Jia Zeng, Pan Zhuang, Wei Jia, Yu Zhang
{"title":"美拉德反应中多种食品加工污染物的联合控制:健康风险与预防综合综述","authors":"Fan Zhang,&nbsp;Xiaomei Yu,&nbsp;Yimei Tian,&nbsp;Jia Zeng,&nbsp;Pan Zhuang,&nbsp;Wei Jia,&nbsp;Yu Zhang","doi":"10.1111/1541-4337.70138","DOIUrl":null,"url":null,"abstract":"<p>There is an urgent need to address food safety concerns associated with multiple Maillard reaction‒derived chemical contaminants, such as acrylamide, heterocyclic aromatic amines, advanced glycation end products, and 5-hydroxymethylfurfural, which are present in processed foods. Current studies have focused on single contaminant generated by the Maillard reaction; however, there is a dearth of information regarding the interactions of multiple contaminants and their joint control methods. This review article comprehensively summarizes the state-of-the-art progress in the simultaneous analysis, coformation, joint hazardous control, and risk assessment of multiple food processing contaminants generated by the Maillard reaction. The Maillard reaction is associated with caramelization, lipid oxidation, protein oxidation, and ascorbic acid browning reactions. Mass spectrometry‒based chromatography is currently the preferred method for the simultaneous quantification of multiple contaminants, with metabolomics and indirect detection methodologies providing new insights. Mitigation strategies for multiple contaminants include optimizing pretreatment, introducing exogenous additives, regulating processing parameters, and utilizing emerging technologies. Limited animal studies on the metabolism of various contaminants have yielded diverse results, guided by biomarkers for deep understanding. Integrated risk assessment should be conducted to quantify multihazard health impacts. In future research, a unique framework should be developed for assessing multiple contaminants, characterizing their metabolic profiles, and optimizing control measures for Maillard reaction‒derived contaminants.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 2","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint control of multiple food processing contaminants in Maillard reaction: A comprehensive review of health risks and prevention\",\"authors\":\"Fan Zhang,&nbsp;Xiaomei Yu,&nbsp;Yimei Tian,&nbsp;Jia Zeng,&nbsp;Pan Zhuang,&nbsp;Wei Jia,&nbsp;Yu Zhang\",\"doi\":\"10.1111/1541-4337.70138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There is an urgent need to address food safety concerns associated with multiple Maillard reaction‒derived chemical contaminants, such as acrylamide, heterocyclic aromatic amines, advanced glycation end products, and 5-hydroxymethylfurfural, which are present in processed foods. Current studies have focused on single contaminant generated by the Maillard reaction; however, there is a dearth of information regarding the interactions of multiple contaminants and their joint control methods. This review article comprehensively summarizes the state-of-the-art progress in the simultaneous analysis, coformation, joint hazardous control, and risk assessment of multiple food processing contaminants generated by the Maillard reaction. The Maillard reaction is associated with caramelization, lipid oxidation, protein oxidation, and ascorbic acid browning reactions. Mass spectrometry‒based chromatography is currently the preferred method for the simultaneous quantification of multiple contaminants, with metabolomics and indirect detection methodologies providing new insights. Mitigation strategies for multiple contaminants include optimizing pretreatment, introducing exogenous additives, regulating processing parameters, and utilizing emerging technologies. Limited animal studies on the metabolism of various contaminants have yielded diverse results, guided by biomarkers for deep understanding. Integrated risk assessment should be conducted to quantify multihazard health impacts. In future research, a unique framework should be developed for assessing multiple contaminants, characterizing their metabolic profiles, and optimizing control measures for Maillard reaction‒derived contaminants.</p>\",\"PeriodicalId\":155,\"journal\":{\"name\":\"Comprehensive Reviews in Food Science and Food Safety\",\"volume\":\"24 2\",\"pages\":\"\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comprehensive Reviews in Food Science and Food Safety\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1541-4337.70138\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comprehensive Reviews in Food Science and Food Safety","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1541-4337.70138","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

迫切需要解决与多种美拉德反应衍生的化学污染物相关的食品安全问题,如丙烯酰胺、杂环芳香胺、晚期糖基化终产物和5-羟甲基糠醛,这些污染物存在于加工食品中。目前的研究主要集中在美拉德反应产生的单一污染物上;然而,关于多种污染物的相互作用及其联合控制方法的信息缺乏。本文综述了美拉德反应产生的多种食品加工污染物的同时分析、构象、联合危害控制和风险评估的最新进展。美拉德反应与焦糖化、脂质氧化、蛋白质氧化和抗坏血酸褐变反应有关。基于质谱的色谱法是目前同时定量多种污染物的首选方法,代谢组学和间接检测方法提供了新的见解。多种污染物的缓解策略包括优化预处理、引入外源添加剂、调节处理参数和利用新兴技术。在生物标志物的指导下,对各种污染物代谢的有限动物研究已经产生了不同的结果。应进行综合风险评估,以量化多重危害对健康的影响。在未来的研究中,应该建立一个独特的框架来评估多种污染物,表征它们的代谢特征,并优化美拉德反应衍生污染物的控制措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint control of multiple food processing contaminants in Maillard reaction: A comprehensive review of health risks and prevention

There is an urgent need to address food safety concerns associated with multiple Maillard reaction‒derived chemical contaminants, such as acrylamide, heterocyclic aromatic amines, advanced glycation end products, and 5-hydroxymethylfurfural, which are present in processed foods. Current studies have focused on single contaminant generated by the Maillard reaction; however, there is a dearth of information regarding the interactions of multiple contaminants and their joint control methods. This review article comprehensively summarizes the state-of-the-art progress in the simultaneous analysis, coformation, joint hazardous control, and risk assessment of multiple food processing contaminants generated by the Maillard reaction. The Maillard reaction is associated with caramelization, lipid oxidation, protein oxidation, and ascorbic acid browning reactions. Mass spectrometry‒based chromatography is currently the preferred method for the simultaneous quantification of multiple contaminants, with metabolomics and indirect detection methodologies providing new insights. Mitigation strategies for multiple contaminants include optimizing pretreatment, introducing exogenous additives, regulating processing parameters, and utilizing emerging technologies. Limited animal studies on the metabolism of various contaminants have yielded diverse results, guided by biomarkers for deep understanding. Integrated risk assessment should be conducted to quantify multihazard health impacts. In future research, a unique framework should be developed for assessing multiple contaminants, characterizing their metabolic profiles, and optimizing control measures for Maillard reaction‒derived contaminants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.20
自引率
2.70%
发文量
182
期刊介绍: Comprehensive Reviews in Food Science and Food Safety (CRFSFS) is an online peer-reviewed journal established in 2002. It aims to provide scientists with unique and comprehensive reviews covering various aspects of food science and technology. CRFSFS publishes in-depth reviews addressing the chemical, microbiological, physical, sensory, and nutritional properties of foods, as well as food processing, engineering, analytical methods, and packaging. Manuscripts should contribute new insights and recommendations to the scientific knowledge on the topic. The journal prioritizes recent developments and encourages critical assessment of experimental design and interpretation of results. Topics related to food safety, such as preventive controls, ingredient contaminants, storage, food authenticity, and adulteration, are considered. Reviews on food hazards must demonstrate validity and reliability in real food systems, not just in model systems. Additionally, reviews on nutritional properties should provide a realistic perspective on how foods influence health, considering processing and storage effects on bioactivity. The journal also accepts reviews on consumer behavior, risk assessment, food regulations, and post-harvest physiology. Authors are encouraged to consult the Editor in Chief before submission to ensure topic suitability. Systematic reviews and meta-analyses on analytical and sensory methods, quality control, and food safety approaches are welcomed, with authors advised to follow IFIS Good review practice guidelines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信