n型有机电化学晶体管中基于醌-氮杂靛蓝的聚合物混合离子-电子导体

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Juntao Tan, Yiming Wang, Xiuyuan Zhu, Jiayao Duan, Riping Liu, Chaoyue Chen, Chong Ran, Zhengke Li, Bin Ai and Wan Yue
{"title":"n型有机电化学晶体管中基于醌-氮杂靛蓝的聚合物混合离子-电子导体","authors":"Juntao Tan, Yiming Wang, Xiuyuan Zhu, Jiayao Duan, Riping Liu, Chaoyue Chen, Chong Ran, Zhengke Li, Bin Ai and Wan Yue","doi":"10.1039/D4QM01004C","DOIUrl":null,"url":null,"abstract":"<p >In the pursuit of channel materials for high-performance n-type organic electrochemical transistors (OECTs), several challenges have been encountered, including difficulties in the modification of the material structure, relatively low performance, and poor stability. To address these issues, designing innovative electron-deficient building blocks is critical for constructing novel donor–acceptor organic semiconductors with low LUMO levels to achieve high-performing n-type OECTs. In this study, we have designed and synthesized a novel glycolated quinone-based electron-deficient building block derived from azaisoindigo (AQM2I), featuring a cross-conjugated planar backbone and low LUMO levels, attributed to enhanced O–H interactions and strong electron-withdrawing amide groups. By combining AQM2I with alternating electron-rich building blocks (T, TT, 2T and 2FT), a series of novel n-type polymers that possessed mixed ionic–electronic conductivity were prepared. The incorporation of various electron-rich building blocks effectively modulates the backbone structure, molecular energy levels and sodium doping capability of the polymers. Moreover, a mixed conducting property with a maximum <em>μC</em>* figure-of-merit value of 0.53 F V<small><sup>−1</sup></small> cm<small><sup>−1</sup></small> s<small><sup>−1</sup></small> for accumulation-mode n-type OECT was achieved, attributed to the high electron mobility induced by the enhanced lamellar stacking, smooth and dense film morphology. The design strategy for novel electron-deficient building blocks presented in this work provides insights for the development of high-performance materials for n-type OECTs.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 4","pages":" 725-734"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polymeric mixed ionic–electronic conductors based on quinoid–azaisoindigo for n-type organic electrochemical transistors†\",\"authors\":\"Juntao Tan, Yiming Wang, Xiuyuan Zhu, Jiayao Duan, Riping Liu, Chaoyue Chen, Chong Ran, Zhengke Li, Bin Ai and Wan Yue\",\"doi\":\"10.1039/D4QM01004C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In the pursuit of channel materials for high-performance n-type organic electrochemical transistors (OECTs), several challenges have been encountered, including difficulties in the modification of the material structure, relatively low performance, and poor stability. To address these issues, designing innovative electron-deficient building blocks is critical for constructing novel donor–acceptor organic semiconductors with low LUMO levels to achieve high-performing n-type OECTs. In this study, we have designed and synthesized a novel glycolated quinone-based electron-deficient building block derived from azaisoindigo (AQM2I), featuring a cross-conjugated planar backbone and low LUMO levels, attributed to enhanced O–H interactions and strong electron-withdrawing amide groups. By combining AQM2I with alternating electron-rich building blocks (T, TT, 2T and 2FT), a series of novel n-type polymers that possessed mixed ionic–electronic conductivity were prepared. The incorporation of various electron-rich building blocks effectively modulates the backbone structure, molecular energy levels and sodium doping capability of the polymers. Moreover, a mixed conducting property with a maximum <em>μC</em>* figure-of-merit value of 0.53 F V<small><sup>−1</sup></small> cm<small><sup>−1</sup></small> s<small><sup>−1</sup></small> for accumulation-mode n-type OECT was achieved, attributed to the high electron mobility induced by the enhanced lamellar stacking, smooth and dense film morphology. The design strategy for novel electron-deficient building blocks presented in this work provides insights for the development of high-performance materials for n-type OECTs.</p>\",\"PeriodicalId\":86,\"journal\":{\"name\":\"Materials Chemistry Frontiers\",\"volume\":\" 4\",\"pages\":\" 725-734\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry Frontiers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm01004c\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm01004c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在追求高性能n型有机电化学晶体管(OECTs)通道材料的过程中,遇到了一些挑战,包括材料结构改性困难,性能相对较低,稳定性差。为了解决这些问题,设计创新的缺电子构建块对于构建具有低LUMO水平的新型供体-受体有机半导体以实现高性能n型OECTs至关重要。在这项研究中,我们设计并合成了一种新的基于糖基化醌的缺电子构建块(AQM2I),来源于azaisoindigo,具有交叉共轭的平面主链和低LUMO水平,这归因于增强的O-H相互作用和强的吸电子酰胺基团。通过将AQM2I与交替富电子构建块(T, TT, 2T和2FT)结合,制备了一系列具有混合离子-电子导电性的新型n型聚合物。各种富电子构建块的加入有效地调节了聚合物的主链结构、分子能级和钠掺杂能力。此外,积累模式n型OECT的混合导电性能最大μC*优值为0.53 F V−1 cm−1 s−1,这是由于增强的层状堆叠和光滑致密的薄膜形貌导致了高电子迁移率。本研究提出的新型缺电子构建块的设计策略为n型oect高性能材料的开发提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Polymeric mixed ionic–electronic conductors based on quinoid–azaisoindigo for n-type organic electrochemical transistors†

Polymeric mixed ionic–electronic conductors based on quinoid–azaisoindigo for n-type organic electrochemical transistors†

In the pursuit of channel materials for high-performance n-type organic electrochemical transistors (OECTs), several challenges have been encountered, including difficulties in the modification of the material structure, relatively low performance, and poor stability. To address these issues, designing innovative electron-deficient building blocks is critical for constructing novel donor–acceptor organic semiconductors with low LUMO levels to achieve high-performing n-type OECTs. In this study, we have designed and synthesized a novel glycolated quinone-based electron-deficient building block derived from azaisoindigo (AQM2I), featuring a cross-conjugated planar backbone and low LUMO levels, attributed to enhanced O–H interactions and strong electron-withdrawing amide groups. By combining AQM2I with alternating electron-rich building blocks (T, TT, 2T and 2FT), a series of novel n-type polymers that possessed mixed ionic–electronic conductivity were prepared. The incorporation of various electron-rich building blocks effectively modulates the backbone structure, molecular energy levels and sodium doping capability of the polymers. Moreover, a mixed conducting property with a maximum μC* figure-of-merit value of 0.53 F V−1 cm−1 s−1 for accumulation-mode n-type OECT was achieved, attributed to the high electron mobility induced by the enhanced lamellar stacking, smooth and dense film morphology. The design strategy for novel electron-deficient building blocks presented in this work provides insights for the development of high-performance materials for n-type OECTs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信