不同醇(CH3OH、CH3CH2OH和(CH2OH)2)对氨硼烷醇解反应机理和条件的研究

IF 2.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Bingke Yang, Haojie Li, Zhen Yao, LiLi Xing, Xuetao Wang and Yilin Zhu
{"title":"不同醇(CH3OH、CH3CH2OH和(CH2OH)2)对氨硼烷醇解反应机理和条件的研究","authors":"Bingke Yang, Haojie Li, Zhen Yao, LiLi Xing, Xuetao Wang and Yilin Zhu","doi":"10.1039/D4NJ05365F","DOIUrl":null,"url":null,"abstract":"<p >In the study, ammonia borane alcoholysis with different types of alcohols (CH<small><sub>3</sub></small>OH, CH<small><sub>3</sub></small>CH<small><sub>2</sub></small>OH, and (CH<small><sub>2</sub></small>OH)<small><sub>2</sub></small>) for hydrogen production is investigated, and the effects of different pressures and temperatures on the adsorption properties are also investigated using DFT calculations and experimental methods. In ammonia borane alcoholysis, NH<small><sub>3</sub></small>BH<small><sub>3</sub></small> molecules and alcohol molecules (R–OH) are first adsorbed onto the active metal surface, where the hydroxyl groups in the R–OH molecules are activated and the O–H bonds are broken to produce the intermediates H* and *O–R. Furthermore, a strong interaction between the B in NH<small><sub>3</sub></small>BH<small><sub>3</sub></small> and the O in *O–R occurs and the B–N bond is broken, forming the intermediate products *NH<small><sub>3</sub></small>, *BH<small><sub>2</sub></small>–O–R and another H*; the H<small><sub>2</sub></small> molecule is released during B–O bonding with one of the H originating from the hydroxyl group and the other originating from the *HB in the NH<small><sub>3</sub></small>BH<small><sub>3</sub></small> molecule. The energy barriers for the ammonia borane alcoholysis with CH<small><sub>3</sub></small>OH, CH<small><sub>3</sub></small>CH<small><sub>2</sub></small>OH and (CH<small><sub>2</sub></small>OH)<small><sub>2</sub></small> are 28.23 kcal mol<small><sup>−1</sup></small>, 37.5 kcal mol<small><sup>−1</sup></small> and 42.32 kcal mol<small><sup>−1</sup></small>, respectively, which result in a different alcoholysis rate of ammonia borane AB/CH<small><sub>3</sub></small>OH &gt; AB/CH<small><sub>3</sub></small>CH<small><sub>2</sub></small>OH &gt; AB/(CH<small><sub>2</sub></small>OH)<small><sub>2</sub></small> at the macroscopic level. The high pressure enhances the adsorption properties of ammonia borane and alcohol molecules, while the high temperature decreases the adsorption properties. The adsorption capacities of ammonia borane and alcohols on the active metal Ru (101) are CH<small><sub>3</sub></small>OH (0.32 mmol g<small><sup>−1</sup></small>) &lt; NH<small><sub>3</sub></small>BH<small><sub>3</sub></small> (1.03 mmol g<small><sup>−1</sup></small>) &lt; CH<small><sub>3</sub></small>CH<small><sub>2</sub></small>OH (1.05 mmol g<small><sup>−1</sup></small>) &lt; (CH<small><sub>2</sub></small>OH)<small><sub>2</sub></small> (1.31 mmol g<small><sup>−1</sup></small>) specifically. The results of this study provide a theoretical basis for the regulation of hydrogen production from ammonia borane alcoholysis.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 7","pages":" 2952-2961"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the reaction mechanism and conditions in ammonia borane alcoholysis with different alcohols (CH3OH, CH3CH2OH, and (CH2OH)2)\",\"authors\":\"Bingke Yang, Haojie Li, Zhen Yao, LiLi Xing, Xuetao Wang and Yilin Zhu\",\"doi\":\"10.1039/D4NJ05365F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In the study, ammonia borane alcoholysis with different types of alcohols (CH<small><sub>3</sub></small>OH, CH<small><sub>3</sub></small>CH<small><sub>2</sub></small>OH, and (CH<small><sub>2</sub></small>OH)<small><sub>2</sub></small>) for hydrogen production is investigated, and the effects of different pressures and temperatures on the adsorption properties are also investigated using DFT calculations and experimental methods. In ammonia borane alcoholysis, NH<small><sub>3</sub></small>BH<small><sub>3</sub></small> molecules and alcohol molecules (R–OH) are first adsorbed onto the active metal surface, where the hydroxyl groups in the R–OH molecules are activated and the O–H bonds are broken to produce the intermediates H* and *O–R. Furthermore, a strong interaction between the B in NH<small><sub>3</sub></small>BH<small><sub>3</sub></small> and the O in *O–R occurs and the B–N bond is broken, forming the intermediate products *NH<small><sub>3</sub></small>, *BH<small><sub>2</sub></small>–O–R and another H*; the H<small><sub>2</sub></small> molecule is released during B–O bonding with one of the H originating from the hydroxyl group and the other originating from the *HB in the NH<small><sub>3</sub></small>BH<small><sub>3</sub></small> molecule. The energy barriers for the ammonia borane alcoholysis with CH<small><sub>3</sub></small>OH, CH<small><sub>3</sub></small>CH<small><sub>2</sub></small>OH and (CH<small><sub>2</sub></small>OH)<small><sub>2</sub></small> are 28.23 kcal mol<small><sup>−1</sup></small>, 37.5 kcal mol<small><sup>−1</sup></small> and 42.32 kcal mol<small><sup>−1</sup></small>, respectively, which result in a different alcoholysis rate of ammonia borane AB/CH<small><sub>3</sub></small>OH &gt; AB/CH<small><sub>3</sub></small>CH<small><sub>2</sub></small>OH &gt; AB/(CH<small><sub>2</sub></small>OH)<small><sub>2</sub></small> at the macroscopic level. The high pressure enhances the adsorption properties of ammonia borane and alcohol molecules, while the high temperature decreases the adsorption properties. The adsorption capacities of ammonia borane and alcohols on the active metal Ru (101) are CH<small><sub>3</sub></small>OH (0.32 mmol g<small><sup>−1</sup></small>) &lt; NH<small><sub>3</sub></small>BH<small><sub>3</sub></small> (1.03 mmol g<small><sup>−1</sup></small>) &lt; CH<small><sub>3</sub></small>CH<small><sub>2</sub></small>OH (1.05 mmol g<small><sup>−1</sup></small>) &lt; (CH<small><sub>2</sub></small>OH)<small><sub>2</sub></small> (1.31 mmol g<small><sup>−1</sup></small>) specifically. The results of this study provide a theoretical basis for the regulation of hydrogen production from ammonia borane alcoholysis.</p>\",\"PeriodicalId\":95,\"journal\":{\"name\":\"New Journal of Chemistry\",\"volume\":\" 7\",\"pages\":\" 2952-2961\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d4nj05365f\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d4nj05365f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了不同类型醇(CH3OH、CH3CH2OH和(CH2OH)2)对氨硼烷醇解制氢的影响,并利用DFT计算和实验方法研究了不同压力和温度对吸附性能的影响。在氨硼烷醇解过程中,NH3BH3分子和醇分子(R-OH)首先被吸附到活性金属表面,R-OH分子中的羟基被激活,O-H键断裂,生成中间产物H*和* O-R。NH3BH3中的B与*O - r中的O发生强相互作用,B - n键断裂,形成中间产物*NH3、* BH2-O-R和另一个H*;H2分子在B-O成键过程中释放,其中一个H来自羟基,另一个来自NH3BH3分子中的*HB。氨硼烷与CH3OH、CH3CH2OH和(CH2OH)2醇解的能垒分别为28.23、37.5和42.32 kcal mol−1,这导致氨硼烷AB/CH3OH >醇解速率不同;AB /酒精比;AB/(CH2OH)2在宏观上。高压增强了氨硼烷和醇分子的吸附性能,高温降低了吸附性能。氨硼烷和醇类对活性金属Ru(101)的吸附量为CH3OH (0.32 mmol g−1)<;NH3BH3 (1.03 mmol g−1)<;CH3CH2OH (1.05 mmol g−1)<;(CH2OH)2 (1.31 mmol g−1)。研究结果为氨硼烷醇解制氢调控提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigation of the reaction mechanism and conditions in ammonia borane alcoholysis with different alcohols (CH3OH, CH3CH2OH, and (CH2OH)2)

Investigation of the reaction mechanism and conditions in ammonia borane alcoholysis with different alcohols (CH3OH, CH3CH2OH, and (CH2OH)2)

In the study, ammonia borane alcoholysis with different types of alcohols (CH3OH, CH3CH2OH, and (CH2OH)2) for hydrogen production is investigated, and the effects of different pressures and temperatures on the adsorption properties are also investigated using DFT calculations and experimental methods. In ammonia borane alcoholysis, NH3BH3 molecules and alcohol molecules (R–OH) are first adsorbed onto the active metal surface, where the hydroxyl groups in the R–OH molecules are activated and the O–H bonds are broken to produce the intermediates H* and *O–R. Furthermore, a strong interaction between the B in NH3BH3 and the O in *O–R occurs and the B–N bond is broken, forming the intermediate products *NH3, *BH2–O–R and another H*; the H2 molecule is released during B–O bonding with one of the H originating from the hydroxyl group and the other originating from the *HB in the NH3BH3 molecule. The energy barriers for the ammonia borane alcoholysis with CH3OH, CH3CH2OH and (CH2OH)2 are 28.23 kcal mol−1, 37.5 kcal mol−1 and 42.32 kcal mol−1, respectively, which result in a different alcoholysis rate of ammonia borane AB/CH3OH > AB/CH3CH2OH > AB/(CH2OH)2 at the macroscopic level. The high pressure enhances the adsorption properties of ammonia borane and alcohol molecules, while the high temperature decreases the adsorption properties. The adsorption capacities of ammonia borane and alcohols on the active metal Ru (101) are CH3OH (0.32 mmol g−1) < NH3BH3 (1.03 mmol g−1) < CH3CH2OH (1.05 mmol g−1) < (CH2OH)2 (1.31 mmol g−1) specifically. The results of this study provide a theoretical basis for the regulation of hydrogen production from ammonia borane alcoholysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信