Yu-Xuan Li , Pei Leng , Abba Aliyu Kasim , Zhao-Liang Li
{"title":"2001 至 2020 年卫星观测到的全球土壤水分的时空变化和主要驱动因素","authors":"Yu-Xuan Li , Pei Leng , Abba Aliyu Kasim , Zhao-Liang Li","doi":"10.1016/j.jhydrol.2025.132848","DOIUrl":null,"url":null,"abstract":"<div><div>Soil moisture is a critical component of the global land-surface hydrological cycle, significantly impacting fields such as meteorology, agriculture, and water resource management. Understanding the spatiotemporal variability of global soil moisture and its dominant driving factors is essential for addressing global climate change and mitigating extreme climate events. This study investigates the spatiotemporal variability of the latest version of the satellite-based global soil moisture (ESA CCI v09.1) and its dominant driving factors across different temporal scales from 2001 to 2020. The results reveal that short-term scales (8-day and monthly) show higher variability, reflecting rapid climate events and soil responses, while long-term scale (annual) demonstrates more stable patterns. On an annual scale, over 5% of the global land area experienced significant drying, while another 5% showed increased wetness. Significant spatial differences in soil moisture were observed across various climate zones and latitudes. Using the Generalized Additive Model, the dominant factors influencing soil moisture trends were identified for each grid. On an 8-day scale, vapor pressure deficit is the primary driver factor in most regions, while evapotranspiration plays a key role in tropical areas. At the monthly scale, vapor pressure deficit influences high latitude regions, whereas precipitation is the main factor at low latitudes. The combined effect of dominant factors on soil moisture is stronger in low latitudes and weaker in high latitudes. These findings improve our understanding of soil moisture dynamics and offer valuable insights for managing water resources and mitigating the impacts of extreme climate events.</div></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"654 ","pages":"Article 132848"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal variability and dominant driving factors of satellite observed global soil moisture from 2001 to 2020\",\"authors\":\"Yu-Xuan Li , Pei Leng , Abba Aliyu Kasim , Zhao-Liang Li\",\"doi\":\"10.1016/j.jhydrol.2025.132848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Soil moisture is a critical component of the global land-surface hydrological cycle, significantly impacting fields such as meteorology, agriculture, and water resource management. Understanding the spatiotemporal variability of global soil moisture and its dominant driving factors is essential for addressing global climate change and mitigating extreme climate events. This study investigates the spatiotemporal variability of the latest version of the satellite-based global soil moisture (ESA CCI v09.1) and its dominant driving factors across different temporal scales from 2001 to 2020. The results reveal that short-term scales (8-day and monthly) show higher variability, reflecting rapid climate events and soil responses, while long-term scale (annual) demonstrates more stable patterns. On an annual scale, over 5% of the global land area experienced significant drying, while another 5% showed increased wetness. Significant spatial differences in soil moisture were observed across various climate zones and latitudes. Using the Generalized Additive Model, the dominant factors influencing soil moisture trends were identified for each grid. On an 8-day scale, vapor pressure deficit is the primary driver factor in most regions, while evapotranspiration plays a key role in tropical areas. At the monthly scale, vapor pressure deficit influences high latitude regions, whereas precipitation is the main factor at low latitudes. The combined effect of dominant factors on soil moisture is stronger in low latitudes and weaker in high latitudes. These findings improve our understanding of soil moisture dynamics and offer valuable insights for managing water resources and mitigating the impacts of extreme climate events.</div></div>\",\"PeriodicalId\":362,\"journal\":{\"name\":\"Journal of Hydrology\",\"volume\":\"654 \",\"pages\":\"Article 132848\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022169425001866\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169425001866","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Spatiotemporal variability and dominant driving factors of satellite observed global soil moisture from 2001 to 2020
Soil moisture is a critical component of the global land-surface hydrological cycle, significantly impacting fields such as meteorology, agriculture, and water resource management. Understanding the spatiotemporal variability of global soil moisture and its dominant driving factors is essential for addressing global climate change and mitigating extreme climate events. This study investigates the spatiotemporal variability of the latest version of the satellite-based global soil moisture (ESA CCI v09.1) and its dominant driving factors across different temporal scales from 2001 to 2020. The results reveal that short-term scales (8-day and monthly) show higher variability, reflecting rapid climate events and soil responses, while long-term scale (annual) demonstrates more stable patterns. On an annual scale, over 5% of the global land area experienced significant drying, while another 5% showed increased wetness. Significant spatial differences in soil moisture were observed across various climate zones and latitudes. Using the Generalized Additive Model, the dominant factors influencing soil moisture trends were identified for each grid. On an 8-day scale, vapor pressure deficit is the primary driver factor in most regions, while evapotranspiration plays a key role in tropical areas. At the monthly scale, vapor pressure deficit influences high latitude regions, whereas precipitation is the main factor at low latitudes. The combined effect of dominant factors on soil moisture is stronger in low latitudes and weaker in high latitudes. These findings improve our understanding of soil moisture dynamics and offer valuable insights for managing water resources and mitigating the impacts of extreme climate events.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.