基于人工智能的室内环境自主移动机器人定位改进方法综述

IF 5.4 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Shoude Wang , Nur Syazreen Ahmad
{"title":"基于人工智能的室内环境自主移动机器人定位改进方法综述","authors":"Shoude Wang ,&nbsp;Nur Syazreen Ahmad","doi":"10.1016/j.jestch.2025.101977","DOIUrl":null,"url":null,"abstract":"<div><div>The adoption of indoor autonomous mobile robot (AMR) has surged significantly, driven by their ability to integrate diverse sensors, maintain low operating costs, facilitate easy deployment, and exhibit superior mobility. Nonetheless, navigating complex indoor environments presents substantial challenges that can impede AMR performance and diminish overall system efficiency. To overcome these obstacles, researchers have concentrated on developing autonomous localization techniques that empower AMR to navigate and execute tasks effectively within intricate settings. Recent advancements in artificial intelligence (AI) applications have profoundly influenced this field, enhancing the control and decision-making capabilities of AMR. This paper offers a comprehensive review of AI-based strategies aimed at improving localization of indoor AMR, including aerial vehicles. We systematically categorize and critically analyze existing research on Simultaneous Localization and Mapping (SLAM)-based methods, odometry-based approaches, and multi-sensor fusion techniques, elucidating the principles and implementations of various AI methodologies. Additionally, we discuss real-time performance challenges associated with AI-based approaches and delineate the distinctions between AI-enhanced localization methods and traditional localization techniques, highlighting the necessity and advantages of adopting AI-based solutions. By clarifying these methodologies, our goal is to enhance their comprehension and promote their widespread adoption within the field. Finally, we discuss emerging research directions and ongoing challenges, providing guidance for future investigations and advancements in the domain of indoor AMR.</div></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"63 ","pages":"Article 101977"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-based approaches for improving autonomous mobile robot localization in indoor environments: A comprehensive review\",\"authors\":\"Shoude Wang ,&nbsp;Nur Syazreen Ahmad\",\"doi\":\"10.1016/j.jestch.2025.101977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The adoption of indoor autonomous mobile robot (AMR) has surged significantly, driven by their ability to integrate diverse sensors, maintain low operating costs, facilitate easy deployment, and exhibit superior mobility. Nonetheless, navigating complex indoor environments presents substantial challenges that can impede AMR performance and diminish overall system efficiency. To overcome these obstacles, researchers have concentrated on developing autonomous localization techniques that empower AMR to navigate and execute tasks effectively within intricate settings. Recent advancements in artificial intelligence (AI) applications have profoundly influenced this field, enhancing the control and decision-making capabilities of AMR. This paper offers a comprehensive review of AI-based strategies aimed at improving localization of indoor AMR, including aerial vehicles. We systematically categorize and critically analyze existing research on Simultaneous Localization and Mapping (SLAM)-based methods, odometry-based approaches, and multi-sensor fusion techniques, elucidating the principles and implementations of various AI methodologies. Additionally, we discuss real-time performance challenges associated with AI-based approaches and delineate the distinctions between AI-enhanced localization methods and traditional localization techniques, highlighting the necessity and advantages of adopting AI-based solutions. By clarifying these methodologies, our goal is to enhance their comprehension and promote their widespread adoption within the field. Finally, we discuss emerging research directions and ongoing challenges, providing guidance for future investigations and advancements in the domain of indoor AMR.</div></div>\",\"PeriodicalId\":48609,\"journal\":{\"name\":\"Engineering Science and Technology-An International Journal-Jestech\",\"volume\":\"63 \",\"pages\":\"Article 101977\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Science and Technology-An International Journal-Jestech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215098625000321\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Science and Technology-An International Journal-Jestech","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215098625000321","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

室内自主移动机器人(AMR)的采用大幅增加,因为它们能够集成各种传感器,保持低运营成本,便于部署,并表现出卓越的移动性。然而,在复杂的室内环境中导航会带来巨大的挑战,可能会阻碍AMR性能并降低整体系统效率。为了克服这些障碍,研究人员专注于开发自主定位技术,使AMR能够在复杂的环境中有效地导航和执行任务。人工智能(AI)应用的最新进展深刻影响了这一领域,增强了AMR的控制和决策能力。本文全面回顾了基于人工智能的策略,旨在提高室内AMR的定位,包括飞行器。我们系统地分类和批判性地分析了基于同步定位和地图(SLAM)的方法、基于里程计的方法和多传感器融合技术的现有研究,阐明了各种人工智能方法的原理和实现。此外,我们还讨论了与基于人工智能的方法相关的实时性能挑战,并描述了人工智能增强的定位方法与传统定位技术之间的区别,强调了采用基于人工智能的解决方案的必要性和优势。通过澄清这些方法,我们的目标是增强对它们的理解,并促进它们在该领域的广泛采用。最后,我们讨论了新兴的研究方向和面临的挑战,为室内抗菌素耐药性领域的未来研究和进展提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI-based approaches for improving autonomous mobile robot localization in indoor environments: A comprehensive review
The adoption of indoor autonomous mobile robot (AMR) has surged significantly, driven by their ability to integrate diverse sensors, maintain low operating costs, facilitate easy deployment, and exhibit superior mobility. Nonetheless, navigating complex indoor environments presents substantial challenges that can impede AMR performance and diminish overall system efficiency. To overcome these obstacles, researchers have concentrated on developing autonomous localization techniques that empower AMR to navigate and execute tasks effectively within intricate settings. Recent advancements in artificial intelligence (AI) applications have profoundly influenced this field, enhancing the control and decision-making capabilities of AMR. This paper offers a comprehensive review of AI-based strategies aimed at improving localization of indoor AMR, including aerial vehicles. We systematically categorize and critically analyze existing research on Simultaneous Localization and Mapping (SLAM)-based methods, odometry-based approaches, and multi-sensor fusion techniques, elucidating the principles and implementations of various AI methodologies. Additionally, we discuss real-time performance challenges associated with AI-based approaches and delineate the distinctions between AI-enhanced localization methods and traditional localization techniques, highlighting the necessity and advantages of adopting AI-based solutions. By clarifying these methodologies, our goal is to enhance their comprehension and promote their widespread adoption within the field. Finally, we discuss emerging research directions and ongoing challenges, providing guidance for future investigations and advancements in the domain of indoor AMR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Science and Technology-An International Journal-Jestech
Engineering Science and Technology-An International Journal-Jestech Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
11.20
自引率
3.50%
发文量
153
审稿时长
22 days
期刊介绍: Engineering Science and Technology, an International Journal (JESTECH) (formerly Technology), a peer-reviewed quarterly engineering journal, publishes both theoretical and experimental high quality papers of permanent interest, not previously published in journals, in the field of engineering and applied science which aims to promote the theory and practice of technology and engineering. In addition to peer-reviewed original research papers, the Editorial Board welcomes original research reports, state-of-the-art reviews and communications in the broadly defined field of engineering science and technology. The scope of JESTECH includes a wide spectrum of subjects including: -Electrical/Electronics and Computer Engineering (Biomedical Engineering and Instrumentation; Coding, Cryptography, and Information Protection; Communications, Networks, Mobile Computing and Distributed Systems; Compilers and Operating Systems; Computer Architecture, Parallel Processing, and Dependability; Computer Vision and Robotics; Control Theory; Electromagnetic Waves, Microwave Techniques and Antennas; Embedded Systems; Integrated Circuits, VLSI Design, Testing, and CAD; Microelectromechanical Systems; Microelectronics, and Electronic Devices and Circuits; Power, Energy and Energy Conversion Systems; Signal, Image, and Speech Processing) -Mechanical and Civil Engineering (Automotive Technologies; Biomechanics; Construction Materials; Design and Manufacturing; Dynamics and Control; Energy Generation, Utilization, Conversion, and Storage; Fluid Mechanics and Hydraulics; Heat and Mass Transfer; Micro-Nano Sciences; Renewable and Sustainable Energy Technologies; Robotics and Mechatronics; Solid Mechanics and Structure; Thermal Sciences) -Metallurgical and Materials Engineering (Advanced Materials Science; Biomaterials; Ceramic and Inorgnanic Materials; Electronic-Magnetic Materials; Energy and Environment; Materials Characterizastion; Metallurgy; Polymers and Nanocomposites)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信