基于土地覆盖语义分割的交叉视角定位估计方法

Nathan A.Z. Xavier , Elcio H. Shiguemori , Marcos R.O.A. Maximo , Mubarak Shah
{"title":"基于土地覆盖语义分割的交叉视角定位估计方法","authors":"Nathan A.Z. Xavier ,&nbsp;Elcio H. Shiguemori ,&nbsp;Marcos R.O.A. Maximo ,&nbsp;Mubarak Shah","doi":"10.1016/j.birob.2024.100208","DOIUrl":null,"url":null,"abstract":"<div><div>Geolocalization is a crucial process that leverages environmental information and contextual data to accurately identify a position. In particular, cross-view geolocalization utilizes images from various perspectives, such as satellite and ground-level images, which are relevant for applications like robotics navigation and autonomous navigation. In this research, we propose a methodology that integrates cross-view geolocalization estimation with a land cover semantic segmentation map. Our solution demonstrates comparable performance to state-of-the-art methods, exhibiting enhanced stability and consistency regardless of the street view location or the dataset used. Additionally, our method generates a focused discrete probability distribution that acts as a heatmap. This heatmap effectively filters out incorrect and unlikely regions, enhancing the reliability of our estimations. Code is available at <span><span>https://github.com/nathanxavier/CVSegGuide</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":100184,"journal":{"name":"Biomimetic Intelligence and Robotics","volume":"5 2","pages":"Article 100208"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A guided approach for cross-view geolocalization estimation with land cover semantic segmentation\",\"authors\":\"Nathan A.Z. Xavier ,&nbsp;Elcio H. Shiguemori ,&nbsp;Marcos R.O.A. Maximo ,&nbsp;Mubarak Shah\",\"doi\":\"10.1016/j.birob.2024.100208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Geolocalization is a crucial process that leverages environmental information and contextual data to accurately identify a position. In particular, cross-view geolocalization utilizes images from various perspectives, such as satellite and ground-level images, which are relevant for applications like robotics navigation and autonomous navigation. In this research, we propose a methodology that integrates cross-view geolocalization estimation with a land cover semantic segmentation map. Our solution demonstrates comparable performance to state-of-the-art methods, exhibiting enhanced stability and consistency regardless of the street view location or the dataset used. Additionally, our method generates a focused discrete probability distribution that acts as a heatmap. This heatmap effectively filters out incorrect and unlikely regions, enhancing the reliability of our estimations. Code is available at <span><span>https://github.com/nathanxavier/CVSegGuide</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":100184,\"journal\":{\"name\":\"Biomimetic Intelligence and Robotics\",\"volume\":\"5 2\",\"pages\":\"Article 100208\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetic Intelligence and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667379724000664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetic Intelligence and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667379724000664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地理定位是一个关键的过程,它利用环境信息和上下文数据来准确地识别一个位置。特别是,交叉视角地理定位利用不同角度的图像,如卫星和地面图像,这与机器人导航和自主导航等应用相关。在这项研究中,我们提出了一种将交叉视图地理定位估计与土地覆盖语义分割图相结合的方法。我们的解决方案表现出与最先进的方法相当的性能,无论街景位置或使用的数据集如何,都表现出增强的稳定性和一致性。此外,我们的方法生成一个集中的离散概率分布,作为热图。这个热图有效地过滤掉了不正确和不可能的区域,提高了我们估计的可靠性。代码可从https://github.com/nathanxavier/CVSegGuide获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A guided approach for cross-view geolocalization estimation with land cover semantic segmentation
Geolocalization is a crucial process that leverages environmental information and contextual data to accurately identify a position. In particular, cross-view geolocalization utilizes images from various perspectives, such as satellite and ground-level images, which are relevant for applications like robotics navigation and autonomous navigation. In this research, we propose a methodology that integrates cross-view geolocalization estimation with a land cover semantic segmentation map. Our solution demonstrates comparable performance to state-of-the-art methods, exhibiting enhanced stability and consistency regardless of the street view location or the dataset used. Additionally, our method generates a focused discrete probability distribution that acts as a heatmap. This heatmap effectively filters out incorrect and unlikely regions, enhancing the reliability of our estimations. Code is available at https://github.com/nathanxavier/CVSegGuide.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信