石膏、玄武岩和硬石膏的溶解机制:分子动力学模拟方法

IF 10.9 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Brayan Alberto Arenas-Blanco , Anderson Arboleda-Lamus , Mack Cleveland , Perla B. Balbuena , Jeffrey W. Bullard
{"title":"石膏、玄武岩和硬石膏的溶解机制:分子动力学模拟方法","authors":"Brayan Alberto Arenas-Blanco ,&nbsp;Anderson Arboleda-Lamus ,&nbsp;Mack Cleveland ,&nbsp;Perla B. Balbuena ,&nbsp;Jeffrey W. Bullard","doi":"10.1016/j.cemconres.2025.107822","DOIUrl":null,"url":null,"abstract":"<div><div>Calcium sulfate has one of three hydration states, CaSO<sub>4</sub>∙ <em>x</em> H<sub>2</sub>O where <em>x</em> equals 0 (anhydrite), 0.5 (bassanite), or 2 (gypsum). Despite numerous investigations of their dissolution in aqueous environments, relatively little is known about the mechanisms at the atomic scale. Here, we shed light on these mechanisms through molecular dynamics simulations of selected surfaces of all three hydrated forms. Umbrella Sampling is used to determine the Potential of Mean Force and to calculate dissolution energy barriers from atomically smooth surfaces with or without one neighboring vacancy and from anhydrite kink sites. The force profiles for Ca<sup>2+</sup> and SO<sub>4</sub><sup>2−</sup> reveal intermediate steps prior to complete solvation and indicates that the energy barriers are impacted by the mineral's hydrated state, the detaching ion, and any neighboring surface vacancy. Water adsorption on anhydrite and bassanite is influenced by the type of vacancy present, with the SO<sub>4</sub><sup>2−</sup> vacancies promoting surface hydration.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"191 ","pages":"Article 107822"},"PeriodicalIF":10.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dissolution mechanisms of gypsum, bassanite, and anhydrite: A molecular dynamics simulation approach\",\"authors\":\"Brayan Alberto Arenas-Blanco ,&nbsp;Anderson Arboleda-Lamus ,&nbsp;Mack Cleveland ,&nbsp;Perla B. Balbuena ,&nbsp;Jeffrey W. Bullard\",\"doi\":\"10.1016/j.cemconres.2025.107822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Calcium sulfate has one of three hydration states, CaSO<sub>4</sub>∙ <em>x</em> H<sub>2</sub>O where <em>x</em> equals 0 (anhydrite), 0.5 (bassanite), or 2 (gypsum). Despite numerous investigations of their dissolution in aqueous environments, relatively little is known about the mechanisms at the atomic scale. Here, we shed light on these mechanisms through molecular dynamics simulations of selected surfaces of all three hydrated forms. Umbrella Sampling is used to determine the Potential of Mean Force and to calculate dissolution energy barriers from atomically smooth surfaces with or without one neighboring vacancy and from anhydrite kink sites. The force profiles for Ca<sup>2+</sup> and SO<sub>4</sub><sup>2−</sup> reveal intermediate steps prior to complete solvation and indicates that the energy barriers are impacted by the mineral's hydrated state, the detaching ion, and any neighboring surface vacancy. Water adsorption on anhydrite and bassanite is influenced by the type of vacancy present, with the SO<sub>4</sub><sup>2−</sup> vacancies promoting surface hydration.</div></div>\",\"PeriodicalId\":266,\"journal\":{\"name\":\"Cement and Concrete Research\",\"volume\":\"191 \",\"pages\":\"Article 107822\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement and Concrete Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008884625000419\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884625000419","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

硫酸钙具有三种水合状态之一:CaSO4∙x H2O,其中x等于0(硬石膏)、0.5(玄松石)或2(石膏)。尽管对它们在水环境中的溶解进行了大量的研究,但在原子尺度上的机制却知之甚少。在这里,我们通过对所有三种水合形式的选定表面的分子动力学模拟来阐明这些机制。伞形取样用于确定平均力势,并计算有或没有相邻空位的原子光滑表面和硬石膏扭结点的溶解能垒。Ca2+和SO42 -的力谱揭示了完全溶剂化之前的中间步骤,并表明能垒受到矿物的水合状态、分离和任何邻近表面空位的影响。水在硬石膏和玄武石上的吸附受空位类型的影响,SO42−空位促进表面水化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dissolution mechanisms of gypsum, bassanite, and anhydrite: A molecular dynamics simulation approach

Dissolution mechanisms of gypsum, bassanite, and anhydrite: A molecular dynamics simulation approach
Calcium sulfate has one of three hydration states, CaSO4x H2O where x equals 0 (anhydrite), 0.5 (bassanite), or 2 (gypsum). Despite numerous investigations of their dissolution in aqueous environments, relatively little is known about the mechanisms at the atomic scale. Here, we shed light on these mechanisms through molecular dynamics simulations of selected surfaces of all three hydrated forms. Umbrella Sampling is used to determine the Potential of Mean Force and to calculate dissolution energy barriers from atomically smooth surfaces with or without one neighboring vacancy and from anhydrite kink sites. The force profiles for Ca2+ and SO42− reveal intermediate steps prior to complete solvation and indicates that the energy barriers are impacted by the mineral's hydrated state, the detaching ion, and any neighboring surface vacancy. Water adsorption on anhydrite and bassanite is influenced by the type of vacancy present, with the SO42− vacancies promoting surface hydration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cement and Concrete Research
Cement and Concrete Research 工程技术-材料科学:综合
CiteScore
20.90
自引率
12.30%
发文量
318
审稿时长
53 days
期刊介绍: Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信