金属玻璃:弹性坚硬,但在任何压力下都能流动

IF 21.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Birte Riechers , Amlan Das , Reza Rashidi , Eric Dufresne , Robert Maaß
{"title":"金属玻璃:弹性坚硬,但在任何压力下都能流动","authors":"Birte Riechers ,&nbsp;Amlan Das ,&nbsp;Reza Rashidi ,&nbsp;Eric Dufresne ,&nbsp;Robert Maaß","doi":"10.1016/j.mattod.2024.11.015","DOIUrl":null,"url":null,"abstract":"<div><div>Crystalline solids have a minimum stress needed to displace atoms or to move defects. This stress defines the true elastic limit and is generally a sizeable share of the macroscopic yield stress. Here we demonstrate that a metallic glass, an amorphous solid with a yield stress in the giga-pascal regime, lacks such a true microscopic elastic limit. Leveraging in-situ coherent x-ray scattering, we uncover a strongly accelerated atomic-scale transport upon the application of a stress as small as 0.005 times the yield stress. With increasing stress levels, the distribution of structural relaxation times changes from compressed exponential to simple exponential form, revealing a stress–temperature equivalence in the time-scale domain. These findings strongly promote a microstructurally heterogeneous picture of metallic glasses, in which a part of the amorphous microstructure controls macroscopic yielding whereas another part admits microplastic flow at any stress.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"82 ","pages":"Pages 92-98"},"PeriodicalIF":21.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metallic glasses: Elastically stiff yet flowing at any stress\",\"authors\":\"Birte Riechers ,&nbsp;Amlan Das ,&nbsp;Reza Rashidi ,&nbsp;Eric Dufresne ,&nbsp;Robert Maaß\",\"doi\":\"10.1016/j.mattod.2024.11.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Crystalline solids have a minimum stress needed to displace atoms or to move defects. This stress defines the true elastic limit and is generally a sizeable share of the macroscopic yield stress. Here we demonstrate that a metallic glass, an amorphous solid with a yield stress in the giga-pascal regime, lacks such a true microscopic elastic limit. Leveraging in-situ coherent x-ray scattering, we uncover a strongly accelerated atomic-scale transport upon the application of a stress as small as 0.005 times the yield stress. With increasing stress levels, the distribution of structural relaxation times changes from compressed exponential to simple exponential form, revealing a stress–temperature equivalence in the time-scale domain. These findings strongly promote a microstructurally heterogeneous picture of metallic glasses, in which a part of the amorphous microstructure controls macroscopic yielding whereas another part admits microplastic flow at any stress.</div></div>\",\"PeriodicalId\":387,\"journal\":{\"name\":\"Materials Today\",\"volume\":\"82 \",\"pages\":\"Pages 92-98\"},\"PeriodicalIF\":21.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369702124002736\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124002736","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

结晶固体具有使原子位移或移动缺陷所需的最小应力。该应力定义了真正的弹性极限,通常在宏观屈服应力中占相当大的份额。在这里,我们证明了金属玻璃,一种具有千兆帕斯卡屈服应力的非晶固体,缺乏这样一个真正的微观弹性极限。利用原位相干x射线散射,我们发现在施加小至屈服应力0.005倍的应力时,原子尺度输运会被强烈加速。随着应力水平的增加,结构弛豫时间的分布由压缩指数形式转变为简单指数形式,在时间尺度域上表现为应力-温度等效。这些发现强烈地促进了金属玻璃微观结构的异质性,其中一部分非晶微观结构控制宏观屈服,而另一部分在任何应力下都允许微塑性流动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Metallic glasses: Elastically stiff yet flowing at any stress

Metallic glasses: Elastically stiff yet flowing at any stress
Crystalline solids have a minimum stress needed to displace atoms or to move defects. This stress defines the true elastic limit and is generally a sizeable share of the macroscopic yield stress. Here we demonstrate that a metallic glass, an amorphous solid with a yield stress in the giga-pascal regime, lacks such a true microscopic elastic limit. Leveraging in-situ coherent x-ray scattering, we uncover a strongly accelerated atomic-scale transport upon the application of a stress as small as 0.005 times the yield stress. With increasing stress levels, the distribution of structural relaxation times changes from compressed exponential to simple exponential form, revealing a stress–temperature equivalence in the time-scale domain. These findings strongly promote a microstructurally heterogeneous picture of metallic glasses, in which a part of the amorphous microstructure controls macroscopic yielding whereas another part admits microplastic flow at any stress.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信