聚类在超临界流体异常性质中的作用

IF 21.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
N.M. Asharchuk, V.I. Yusupov, E.I. Mareev
{"title":"聚类在超临界流体异常性质中的作用","authors":"N.M. Asharchuk,&nbsp;V.I. Yusupov,&nbsp;E.I. Mareev","doi":"10.1016/j.mattod.2024.11.008","DOIUrl":null,"url":null,"abstract":"<div><div>We propose that the anomalous (non-monotonic) behavior of physical properties of supercritical fluids (SCF) in the Widom delta is attributed to the formation of medium-sized clusters. This hypothesis is experimentally verified for carbon dioxide using both experimental methods and molecular dynamics simulations. From a microscopic point of view, the non-monotonic behavior of the nonlinear refractive index, speed of sound, and Raman scattering efficiency is caused by the formation of quasi-linear clusters of medium size (5–200 molecules per cluster). Within the clusters, the molecule concentration is close to that of the liquid phase, while outside the clusters, it resembles the gas phase, leading to experimentally observed high (∼15 %) density fluctuations. Isolated linear clusters exhibit high second-order hyperpolarizability, resulting in an increase in the molecular contribution to the nonlinear refractive index and the intensity of Raman scattering. The appearance of multiple Widom lines on the pressure–temperature (p-T) diagram, each associated with unique physical properties, arises from the combined effects of cluster-specific and density-related factors. This interplay results in the divergence of Widom lines and the formation of the characteristic feature known as the Widom delta.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"82 ","pages":"Pages 49-56"},"PeriodicalIF":21.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of clustering in the anomalous properties of supercritical fluids\",\"authors\":\"N.M. Asharchuk,&nbsp;V.I. Yusupov,&nbsp;E.I. Mareev\",\"doi\":\"10.1016/j.mattod.2024.11.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose that the anomalous (non-monotonic) behavior of physical properties of supercritical fluids (SCF) in the Widom delta is attributed to the formation of medium-sized clusters. This hypothesis is experimentally verified for carbon dioxide using both experimental methods and molecular dynamics simulations. From a microscopic point of view, the non-monotonic behavior of the nonlinear refractive index, speed of sound, and Raman scattering efficiency is caused by the formation of quasi-linear clusters of medium size (5–200 molecules per cluster). Within the clusters, the molecule concentration is close to that of the liquid phase, while outside the clusters, it resembles the gas phase, leading to experimentally observed high (∼15 %) density fluctuations. Isolated linear clusters exhibit high second-order hyperpolarizability, resulting in an increase in the molecular contribution to the nonlinear refractive index and the intensity of Raman scattering. The appearance of multiple Widom lines on the pressure–temperature (p-T) diagram, each associated with unique physical properties, arises from the combined effects of cluster-specific and density-related factors. This interplay results in the divergence of Widom lines and the formation of the characteristic feature known as the Widom delta.</div></div>\",\"PeriodicalId\":387,\"journal\":{\"name\":\"Materials Today\",\"volume\":\"82 \",\"pages\":\"Pages 49-56\"},\"PeriodicalIF\":21.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369702124002578\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124002578","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们认为,Widom三角洲超临界流体(SCF)物理性质的异常(非单调)行为归因于中型簇的形成。用实验方法和分子动力学模拟对二氧化碳进行了实验验证。从微观角度看,非线性折射率、声速和拉曼散射效率的非单调行为是由中等大小的准线性团簇(每个团簇5-200个分子)的形成引起的。在簇内,分子浓度接近于液相,而在簇外,它类似于气相,导致实验观察到高(~ 15%)密度波动。孤立的线性团簇表现出高的二阶超极化率,导致非线性折射率和拉曼散射强度的分子贡献增加。压力-温度(p-T)图上出现多条Widom线,每条线都与独特的物理性质相关,这是由簇特定因素和密度相关因素共同作用的结果。这种相互作用导致了智慧线的发散,并形成了被称为智慧三角洲的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Role of clustering in the anomalous properties of supercritical fluids

Role of clustering in the anomalous properties of supercritical fluids
We propose that the anomalous (non-monotonic) behavior of physical properties of supercritical fluids (SCF) in the Widom delta is attributed to the formation of medium-sized clusters. This hypothesis is experimentally verified for carbon dioxide using both experimental methods and molecular dynamics simulations. From a microscopic point of view, the non-monotonic behavior of the nonlinear refractive index, speed of sound, and Raman scattering efficiency is caused by the formation of quasi-linear clusters of medium size (5–200 molecules per cluster). Within the clusters, the molecule concentration is close to that of the liquid phase, while outside the clusters, it resembles the gas phase, leading to experimentally observed high (∼15 %) density fluctuations. Isolated linear clusters exhibit high second-order hyperpolarizability, resulting in an increase in the molecular contribution to the nonlinear refractive index and the intensity of Raman scattering. The appearance of multiple Widom lines on the pressure–temperature (p-T) diagram, each associated with unique physical properties, arises from the combined effects of cluster-specific and density-related factors. This interplay results in the divergence of Widom lines and the formation of the characteristic feature known as the Widom delta.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信