基于时间序列力信息的斜孔插钉机器人学习装配方法

Zhifei Shen , Zhiyong Jiang , Jingwang Zhang , Jun Wu , Qiuguo Zhu
{"title":"基于时间序列力信息的斜孔插钉机器人学习装配方法","authors":"Zhifei Shen ,&nbsp;Zhiyong Jiang ,&nbsp;Jingwang Zhang ,&nbsp;Jun Wu ,&nbsp;Qiuguo Zhu","doi":"10.1016/j.birob.2024.100209","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel method for learning force-aware robot assembly skills, specifically targeting the peg insertion task on inclined hole. For the peg insertion task involving inclined holes, we employ one-dimensional convolutional networks (1DCNN) and gated recurrent units (GRU) to extract features from the time-series force information during the assembly process, thereby identifying different contact states between the peg and the hole. Subsequent to the identification of contact states, corresponding pose adjustments are executed, and overall smooth interaction is ensured through admittance control. The assembly process is dynamically adjusted using a state machine to fine-tune admittance control parameters and seamlessly switch the assembly state. Through the utilization of dual-arm clamping, we conduct key unlocking experiments on bases inclined at varying degrees. Our results demonstrate that the proposed method significantly improves the accuracy and success rate of state recognition compared to previous methods.</div></div>","PeriodicalId":100184,"journal":{"name":"Biomimetic Intelligence and Robotics","volume":"5 1","pages":"Article 100209"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning-based robot assembly method for peg insertion tasks on inclined hole using time-series force information\",\"authors\":\"Zhifei Shen ,&nbsp;Zhiyong Jiang ,&nbsp;Jingwang Zhang ,&nbsp;Jun Wu ,&nbsp;Qiuguo Zhu\",\"doi\":\"10.1016/j.birob.2024.100209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a novel method for learning force-aware robot assembly skills, specifically targeting the peg insertion task on inclined hole. For the peg insertion task involving inclined holes, we employ one-dimensional convolutional networks (1DCNN) and gated recurrent units (GRU) to extract features from the time-series force information during the assembly process, thereby identifying different contact states between the peg and the hole. Subsequent to the identification of contact states, corresponding pose adjustments are executed, and overall smooth interaction is ensured through admittance control. The assembly process is dynamically adjusted using a state machine to fine-tune admittance control parameters and seamlessly switch the assembly state. Through the utilization of dual-arm clamping, we conduct key unlocking experiments on bases inclined at varying degrees. Our results demonstrate that the proposed method significantly improves the accuracy and success rate of state recognition compared to previous methods.</div></div>\",\"PeriodicalId\":100184,\"journal\":{\"name\":\"Biomimetic Intelligence and Robotics\",\"volume\":\"5 1\",\"pages\":\"Article 100209\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetic Intelligence and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667379724000676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetic Intelligence and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667379724000676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种学习力感知机器人装配技能的新方法,特别是针对斜孔上的钉插入任务。对于涉及斜孔的钉插入任务,我们采用一维卷积网络(1DCNN)和门控循环单元(GRU)从装配过程中的时间序列力信息中提取特征,从而识别出钉与孔之间的不同接触状态。在识别接触状态后,执行相应的位姿调整,并通过导纳控制确保整体平滑交互。采用状态机对装配过程进行动态调整,微调导纳控制参数,实现装配状态的无缝切换。利用双臂夹紧,在不同倾斜程度的底座上进行钥匙解锁实验。实验结果表明,与以往的状态识别方法相比,该方法显著提高了状态识别的准确率和成功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning-based robot assembly method for peg insertion tasks on inclined hole using time-series force information
This paper presents a novel method for learning force-aware robot assembly skills, specifically targeting the peg insertion task on inclined hole. For the peg insertion task involving inclined holes, we employ one-dimensional convolutional networks (1DCNN) and gated recurrent units (GRU) to extract features from the time-series force information during the assembly process, thereby identifying different contact states between the peg and the hole. Subsequent to the identification of contact states, corresponding pose adjustments are executed, and overall smooth interaction is ensured through admittance control. The assembly process is dynamically adjusted using a state machine to fine-tune admittance control parameters and seamlessly switch the assembly state. Through the utilization of dual-arm clamping, we conduct key unlocking experiments on bases inclined at varying degrees. Our results demonstrate that the proposed method significantly improves the accuracy and success rate of state recognition compared to previous methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信