CYP1A和AhR调控对多环芳烃诱导的日本medaka发育缺陷的影响

IF 4.1 2区 环境科学与生态学 Q1 MARINE & FRESHWATER BIOLOGY
Shusaku Fukugami , Masatoshi Yamasaki , Emiko Kokushi , Seiichi Uno
{"title":"CYP1A和AhR调控对多环芳烃诱导的日本medaka发育缺陷的影响","authors":"Shusaku Fukugami ,&nbsp;Masatoshi Yamasaki ,&nbsp;Emiko Kokushi ,&nbsp;Seiichi Uno","doi":"10.1016/j.aquatox.2025.107267","DOIUrl":null,"url":null,"abstract":"<div><div>Polycyclic aromatic hydrocarbons (PAHs) are known to induce developmental malformations in fish embryos. However, the interaction between aryl hydrocarbon receptor (AhR) and cytochrome P450 (CYP) in PAH-induced development defects remains unclear. Therefore, we investigated the effects of the CYP1A inhibitor piperonylbutoxide (PBO) and the AhR antagonist CH223191 (CH) on the development of Japanese medaka (<em>Oryzias Latipes</em>) embryos exposed to different PAHs. Japanese medaka embryos were exposed to three conditions: PAH alone, PAH and PBO, and PAH and CH. Microscopic observations were performed to examine the presence of developmental defects. Although neither phenanthrene (Phe) nor fluoranthene (Flu) induced morphological malformations in larvae, benzo(a)anthracene (BaA) exposure induced craniofacial deformities in the larvae. Additionally, BaA and PBO co-exposure significantly increased the rate and severity of malformations. Pyrene (Pyr) exposure induced craniofacial defects, cardiac hypertrophy, pericardial edema, and spinal curvature, which were attenuated by exposure to either CH or PBO. Collectively, these findings suggest that structurally different PAHs exert their toxic effects via distinct mechanisms during fish development.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"280 ","pages":"Article 107267"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of CYP1A and AhR modulation on polycyclic aromatic hydrocarbon-induced developmental defects in Japanese medaka\",\"authors\":\"Shusaku Fukugami ,&nbsp;Masatoshi Yamasaki ,&nbsp;Emiko Kokushi ,&nbsp;Seiichi Uno\",\"doi\":\"10.1016/j.aquatox.2025.107267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polycyclic aromatic hydrocarbons (PAHs) are known to induce developmental malformations in fish embryos. However, the interaction between aryl hydrocarbon receptor (AhR) and cytochrome P450 (CYP) in PAH-induced development defects remains unclear. Therefore, we investigated the effects of the CYP1A inhibitor piperonylbutoxide (PBO) and the AhR antagonist CH223191 (CH) on the development of Japanese medaka (<em>Oryzias Latipes</em>) embryos exposed to different PAHs. Japanese medaka embryos were exposed to three conditions: PAH alone, PAH and PBO, and PAH and CH. Microscopic observations were performed to examine the presence of developmental defects. Although neither phenanthrene (Phe) nor fluoranthene (Flu) induced morphological malformations in larvae, benzo(a)anthracene (BaA) exposure induced craniofacial deformities in the larvae. Additionally, BaA and PBO co-exposure significantly increased the rate and severity of malformations. Pyrene (Pyr) exposure induced craniofacial defects, cardiac hypertrophy, pericardial edema, and spinal curvature, which were attenuated by exposure to either CH or PBO. Collectively, these findings suggest that structurally different PAHs exert their toxic effects via distinct mechanisms during fish development.</div></div>\",\"PeriodicalId\":248,\"journal\":{\"name\":\"Aquatic Toxicology\",\"volume\":\"280 \",\"pages\":\"Article 107267\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Toxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166445X25000323\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X25000323","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

已知多环芳烃(PAHs)可诱导鱼类胚胎发育畸形。然而,芳烃受体(AhR)和细胞色素P450 (CYP)在多环芳烃诱导的发育缺陷中的相互作用尚不清楚。因此,我们研究了CYP1A抑制剂胡椒酰丁醇(PBO)和AhR拮抗剂CH223191 (CH)对暴露于不同多环芳烃环境下的日本medaka (Oryzias Latipes)胚胎发育的影响。将日本水母胚胎暴露于三种条件下:单独多环芳烃、多环芳烃和多环芳烃以及多环芳烃和多环芳烃。通过显微镜观察来检查发育缺陷的存在。虽然菲(Phe)和氟蒽(Flu)都不会引起幼虫的形态畸形,但苯并(a)蒽(BaA)暴露会引起幼虫的颅面畸形。此外,BaA和PBO共同暴露显著增加畸形发生率和严重程度。芘暴露可引起颅面缺损、心脏肥厚、心包水肿和脊柱弯曲,暴露于CH或PBO均可减轻这些缺陷。总的来说,这些发现表明,在鱼类发育过程中,结构不同的多环芳烃通过不同的机制发挥毒性作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of CYP1A and AhR modulation on polycyclic aromatic hydrocarbon-induced developmental defects in Japanese medaka
Polycyclic aromatic hydrocarbons (PAHs) are known to induce developmental malformations in fish embryos. However, the interaction between aryl hydrocarbon receptor (AhR) and cytochrome P450 (CYP) in PAH-induced development defects remains unclear. Therefore, we investigated the effects of the CYP1A inhibitor piperonylbutoxide (PBO) and the AhR antagonist CH223191 (CH) on the development of Japanese medaka (Oryzias Latipes) embryos exposed to different PAHs. Japanese medaka embryos were exposed to three conditions: PAH alone, PAH and PBO, and PAH and CH. Microscopic observations were performed to examine the presence of developmental defects. Although neither phenanthrene (Phe) nor fluoranthene (Flu) induced morphological malformations in larvae, benzo(a)anthracene (BaA) exposure induced craniofacial deformities in the larvae. Additionally, BaA and PBO co-exposure significantly increased the rate and severity of malformations. Pyrene (Pyr) exposure induced craniofacial defects, cardiac hypertrophy, pericardial edema, and spinal curvature, which were attenuated by exposure to either CH or PBO. Collectively, these findings suggest that structurally different PAHs exert their toxic effects via distinct mechanisms during fish development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aquatic Toxicology
Aquatic Toxicology 环境科学-毒理学
CiteScore
7.10
自引率
4.40%
发文量
250
审稿时长
56 days
期刊介绍: Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems. Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信