甲烷作为表征煤层气储层孔隙体积的探针:扩孔分析方法

IF 7.5 1区 工程技术 Q2 ENERGY & FUELS
Fuel Pub Date : 2025-02-11 DOI:10.1016/j.fuel.2025.134563
Xiaoxi Cheng , Yuanping Cheng , Chenghao Wang , Jia Wang , Biao Hu
{"title":"甲烷作为表征煤层气储层孔隙体积的探针:扩孔分析方法","authors":"Xiaoxi Cheng ,&nbsp;Yuanping Cheng ,&nbsp;Chenghao Wang ,&nbsp;Jia Wang ,&nbsp;Biao Hu","doi":"10.1016/j.fuel.2025.134563","DOIUrl":null,"url":null,"abstract":"<div><div>Molecular probes are indispensable tools for structure analysis of porous media. Notably, methane, the primary component of coalbed gas, provides a more direct insight into coal pore properties compared to traditional molecular probes like nitrogen and carbon dioxide. This study develops a methodology for determining the pore volume of coal, utilizing methane as a probe. Two Dubinin–Radushkevich (DR) adsorption model-based methods, the virtual saturated vapor pressure modified method (DR-P<span><math><msub><mrow></mrow><mrow><mn>0</mn></mrow></msub></math></span>) and the adsorbed phase density modified method (DR-<span><math><mi>ρ</mi></math></span>), were discussed. To select a superior precision method for pore volume determination, we proposed an evaluation method that leverages molecular simulation, comparing direct-model pore volumes with fitted-calculated pore volumes obtained by fitting the DR modified models to simulated adsorption isotherms. The results demonstrate that the DR-<span><math><mi>ρ</mi></math></span> methods exhibit high precision, with a discrepancy rate of only 2.45%. Compared with the pore volumes of traditional molecular probes with well-defined pore measurement ranges such as CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, it was confirmed that the CH<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>-DR-<span><math><mi>ρ</mi></math></span> methods are mainly aimed at micropores. Moreover, the CH<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> probe performs better than the CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> probe in reflecting adsorption characteristics. By conducting a correlation analysis between the pore volume data obtained from CH<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> and CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> probes on 20 coal samples and the methane adsorption amount at 5 MPa, we found that the Pearson correlation coefficient for the CH<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> probe is significantly higher than that for CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, which was more than 0.99. This study reveals the potential of methane probes in pore characterization and expands pore analysis methods.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"389 ","pages":"Article 134563"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methane as probes for characterizing pore volume in coalbed gas reservoir: Expanding the pore analysis method\",\"authors\":\"Xiaoxi Cheng ,&nbsp;Yuanping Cheng ,&nbsp;Chenghao Wang ,&nbsp;Jia Wang ,&nbsp;Biao Hu\",\"doi\":\"10.1016/j.fuel.2025.134563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Molecular probes are indispensable tools for structure analysis of porous media. Notably, methane, the primary component of coalbed gas, provides a more direct insight into coal pore properties compared to traditional molecular probes like nitrogen and carbon dioxide. This study develops a methodology for determining the pore volume of coal, utilizing methane as a probe. Two Dubinin–Radushkevich (DR) adsorption model-based methods, the virtual saturated vapor pressure modified method (DR-P<span><math><msub><mrow></mrow><mrow><mn>0</mn></mrow></msub></math></span>) and the adsorbed phase density modified method (DR-<span><math><mi>ρ</mi></math></span>), were discussed. To select a superior precision method for pore volume determination, we proposed an evaluation method that leverages molecular simulation, comparing direct-model pore volumes with fitted-calculated pore volumes obtained by fitting the DR modified models to simulated adsorption isotherms. The results demonstrate that the DR-<span><math><mi>ρ</mi></math></span> methods exhibit high precision, with a discrepancy rate of only 2.45%. Compared with the pore volumes of traditional molecular probes with well-defined pore measurement ranges such as CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, it was confirmed that the CH<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>-DR-<span><math><mi>ρ</mi></math></span> methods are mainly aimed at micropores. Moreover, the CH<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> probe performs better than the CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> probe in reflecting adsorption characteristics. By conducting a correlation analysis between the pore volume data obtained from CH<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> and CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> probes on 20 coal samples and the methane adsorption amount at 5 MPa, we found that the Pearson correlation coefficient for the CH<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> probe is significantly higher than that for CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, which was more than 0.99. This study reveals the potential of methane probes in pore characterization and expands pore analysis methods.</div></div>\",\"PeriodicalId\":325,\"journal\":{\"name\":\"Fuel\",\"volume\":\"389 \",\"pages\":\"Article 134563\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001623612500287X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001623612500287X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

分子探针是分析多孔介质结构不可缺少的工具。值得注意的是,与氮气和二氧化碳等传统分子探针相比,煤层气的主要成分甲烷可以更直接地了解煤的孔隙特性。本研究开发了一种确定煤孔隙体积的方法,利用甲烷作为探针。讨论了两种基于Dubinin-Radushkevich (DR)吸附模型的方法,即虚拟饱和蒸汽压修正法(DR- p0)和吸附相密度修正法(DR-ρ)。为了选择更高精度的孔体积测定方法,我们提出了一种利用分子模拟的评估方法,将直接模型孔体积与通过模拟吸附等温线拟合DR修正模型获得的拟合计算孔体积进行比较。结果表明,DR-ρ方法具有较高的精度,误差率仅为2.45%。与CO2、N2等具有明确孔隙测量范围的传统分子探针相比,证实了CH4-DR-ρ方法主要针对微孔。此外,CH4探针比CO2探针更能反映吸附特性。通过对20个煤样上CH4和CO2探针获得的孔隙体积数据与5 MPa下甲烷吸附量的相关性分析,我们发现CH4探针的Pearson相关系数显著高于CO2探针,均大于0.99。该研究揭示了甲烷探针在孔隙表征方面的潜力,拓展了孔隙分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Methane as probes for characterizing pore volume in coalbed gas reservoir: Expanding the pore analysis method
Molecular probes are indispensable tools for structure analysis of porous media. Notably, methane, the primary component of coalbed gas, provides a more direct insight into coal pore properties compared to traditional molecular probes like nitrogen and carbon dioxide. This study develops a methodology for determining the pore volume of coal, utilizing methane as a probe. Two Dubinin–Radushkevich (DR) adsorption model-based methods, the virtual saturated vapor pressure modified method (DR-P0) and the adsorbed phase density modified method (DR-ρ), were discussed. To select a superior precision method for pore volume determination, we proposed an evaluation method that leverages molecular simulation, comparing direct-model pore volumes with fitted-calculated pore volumes obtained by fitting the DR modified models to simulated adsorption isotherms. The results demonstrate that the DR-ρ methods exhibit high precision, with a discrepancy rate of only 2.45%. Compared with the pore volumes of traditional molecular probes with well-defined pore measurement ranges such as CO2 and N2, it was confirmed that the CH4-DR-ρ methods are mainly aimed at micropores. Moreover, the CH4 probe performs better than the CO2 probe in reflecting adsorption characteristics. By conducting a correlation analysis between the pore volume data obtained from CH4 and CO2 probes on 20 coal samples and the methane adsorption amount at 5 MPa, we found that the Pearson correlation coefficient for the CH4 probe is significantly higher than that for CO2, which was more than 0.99. This study reveals the potential of methane probes in pore characterization and expands pore analysis methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信