以水为调制剂,采用环保方法制备了层次化多孔材料HP-UiO-NH2-X,并将其用于吸附氧氟沙星

IF 4.8 3区 材料科学 Q1 CHEMISTRY, APPLIED
Qingxin Lu, Jiaxin Zheng, Yaoyao Zhang, Wenjuan Lu
{"title":"以水为调制剂,采用环保方法制备了层次化多孔材料HP-UiO-NH2-X,并将其用于吸附氧氟沙星","authors":"Qingxin Lu,&nbsp;Jiaxin Zheng,&nbsp;Yaoyao Zhang,&nbsp;Wenjuan Lu","doi":"10.1016/j.micromeso.2025.113532","DOIUrl":null,"url":null,"abstract":"<div><div>Hierarchical Porous Metal-Organic Frameworks (HP-MOFs) are widely recognized for their broad applications in adsorption, owing to their structural tunability and diverse pore types. However, existing synthesis methods often face challenges, including prolonged synthesis times, high energy consumption, and complex procedures. In this study, we utilized water, an environmentally friendly modulator, to successfully synthesize hierarchical porous UiO-series materials via a one-step solvothermal method. HP-UiO-66-NH<sub>2</sub>-X with varied pore structures was synthesized by adjusting the H<sub>2</sub>O/Zr<sup>4+</sup> ratio in the precursor. The adsorption performance of the resulting materials for ofloxacin (OFL) was subsequently evaluated. Characterization results demonstrated that this approach effectively modulated the coordination between organic ligands and metal centers, leading to ligand defects and the precise tuning of the UiO-66-NH<sub>2</sub> framework's pore structure. When the H<sub>2</sub>O/Zr<sup>4+</sup> ratio was 22.2 (M/M), the synthesized HP-UiO-66-NH<sub>2</sub>-2 material exhibited optimal adsorption performance (233.1 mg/g) and excellent selectivity. The adsorption process involved multiple interactions, including electrostatic interactions, pore filling, metal coordination, hydrogen bonding, and π-π interactions. In adsorption-desorption cycling tests, HP-UiO-66-NH<sub>2</sub>-2 maintained over 90 % removal efficiency after 10 cycles, demonstrating its excellent reusability and stability. Therefore, this study proposes an environmentally friendly and simplified synthesis strategy, successfully producing HP-UiO-66-NH<sub>2</sub>-X materials with remarkable performance in removing OFL. This approach offers a novel perspective for improving the performance and applicability of environmentally friendly materials.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"388 ","pages":"Article 113532"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The hierarchical porous material HP-UiO-NH2-X was prepared by an environmentally friendly method using water as a modulator and used for adsorption of ofloxacin\",\"authors\":\"Qingxin Lu,&nbsp;Jiaxin Zheng,&nbsp;Yaoyao Zhang,&nbsp;Wenjuan Lu\",\"doi\":\"10.1016/j.micromeso.2025.113532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hierarchical Porous Metal-Organic Frameworks (HP-MOFs) are widely recognized for their broad applications in adsorption, owing to their structural tunability and diverse pore types. However, existing synthesis methods often face challenges, including prolonged synthesis times, high energy consumption, and complex procedures. In this study, we utilized water, an environmentally friendly modulator, to successfully synthesize hierarchical porous UiO-series materials via a one-step solvothermal method. HP-UiO-66-NH<sub>2</sub>-X with varied pore structures was synthesized by adjusting the H<sub>2</sub>O/Zr<sup>4+</sup> ratio in the precursor. The adsorption performance of the resulting materials for ofloxacin (OFL) was subsequently evaluated. Characterization results demonstrated that this approach effectively modulated the coordination between organic ligands and metal centers, leading to ligand defects and the precise tuning of the UiO-66-NH<sub>2</sub> framework's pore structure. When the H<sub>2</sub>O/Zr<sup>4+</sup> ratio was 22.2 (M/M), the synthesized HP-UiO-66-NH<sub>2</sub>-2 material exhibited optimal adsorption performance (233.1 mg/g) and excellent selectivity. The adsorption process involved multiple interactions, including electrostatic interactions, pore filling, metal coordination, hydrogen bonding, and π-π interactions. In adsorption-desorption cycling tests, HP-UiO-66-NH<sub>2</sub>-2 maintained over 90 % removal efficiency after 10 cycles, demonstrating its excellent reusability and stability. Therefore, this study proposes an environmentally friendly and simplified synthesis strategy, successfully producing HP-UiO-66-NH<sub>2</sub>-X materials with remarkable performance in removing OFL. This approach offers a novel perspective for improving the performance and applicability of environmentally friendly materials.</div></div>\",\"PeriodicalId\":392,\"journal\":{\"name\":\"Microporous and Mesoporous Materials\",\"volume\":\"388 \",\"pages\":\"Article 113532\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microporous and Mesoporous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387181125000460\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181125000460","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

层次多孔金属有机框架(HP-MOFs)由于其结构的可调节性和不同的孔类型,在吸附领域有着广泛的应用。然而,现有的合成方法经常面临挑战,包括合成时间长、能量消耗高、程序复杂等。在本研究中,我们利用环境友好调节剂水,通过一步溶剂热法成功合成了分层多孔uio系列材料。通过调整前驱体中H2O/Zr4+的比例,合成了具有不同孔隙结构的HP-UiO-66-NH2-X。随后评价了所得材料对氧氟沙星(OFL)的吸附性能。表征结果表明,该方法有效地调节了有机配体与金属中心之间的配位,导致配体缺陷和UiO-66-NH2框架孔结构的精确调谐。当H2O/Zr4+比为22.2 (M/M)时,合成的HP-UiO-66-NH2-2材料表现出最佳的吸附性能(233.1 mg/g)和优异的选择性。吸附过程涉及多种相互作用,包括静电相互作用、孔隙填充、金属配位、氢键和π-π相互作用。在吸附-解吸循环试验中,HP-UiO-66-NH2-2在10次循环后仍保持90%以上的去除率,表明其具有良好的可重复使用性和稳定性。因此,本研究提出了一种环境友好且简化的合成策略,成功制备出具有显著去除OFL性能的HP-UiO-66-NH2-X材料。这种方法为提高环保材料的性能和适用性提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The hierarchical porous material HP-UiO-NH2-X was prepared by an environmentally friendly method using water as a modulator and used for adsorption of ofloxacin

The hierarchical porous material HP-UiO-NH2-X was prepared by an environmentally friendly method using water as a modulator and used for adsorption of ofloxacin
Hierarchical Porous Metal-Organic Frameworks (HP-MOFs) are widely recognized for their broad applications in adsorption, owing to their structural tunability and diverse pore types. However, existing synthesis methods often face challenges, including prolonged synthesis times, high energy consumption, and complex procedures. In this study, we utilized water, an environmentally friendly modulator, to successfully synthesize hierarchical porous UiO-series materials via a one-step solvothermal method. HP-UiO-66-NH2-X with varied pore structures was synthesized by adjusting the H2O/Zr4+ ratio in the precursor. The adsorption performance of the resulting materials for ofloxacin (OFL) was subsequently evaluated. Characterization results demonstrated that this approach effectively modulated the coordination between organic ligands and metal centers, leading to ligand defects and the precise tuning of the UiO-66-NH2 framework's pore structure. When the H2O/Zr4+ ratio was 22.2 (M/M), the synthesized HP-UiO-66-NH2-2 material exhibited optimal adsorption performance (233.1 mg/g) and excellent selectivity. The adsorption process involved multiple interactions, including electrostatic interactions, pore filling, metal coordination, hydrogen bonding, and π-π interactions. In adsorption-desorption cycling tests, HP-UiO-66-NH2-2 maintained over 90 % removal efficiency after 10 cycles, demonstrating its excellent reusability and stability. Therefore, this study proposes an environmentally friendly and simplified synthesis strategy, successfully producing HP-UiO-66-NH2-X materials with remarkable performance in removing OFL. This approach offers a novel perspective for improving the performance and applicability of environmentally friendly materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microporous and Mesoporous Materials
Microporous and Mesoporous Materials 化学-材料科学:综合
CiteScore
10.70
自引率
5.80%
发文量
649
审稿时长
26 days
期刊介绍: Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal. Topics which are particularly of interest include: All aspects of natural microporous and mesoporous solids The synthesis of crystalline or amorphous porous materials The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials Adsorption (and other separation techniques) using microporous or mesoporous adsorbents Catalysis by microporous and mesoporous materials Host/guest interactions Theoretical chemistry and modelling of host/guest interactions All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信