Mohammad Mahdi Malakiyeh, Saeed Shojaee, Saleh Hamzehei-Javaran
{"title":"求解时变有限元方程的显式-隐式时间积分新方法:Versa-δ法","authors":"Mohammad Mahdi Malakiyeh, Saeed Shojaee, Saleh Hamzehei-Javaran","doi":"10.1016/j.compstruc.2025.107664","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we present a novel explicit–implicit time integration method for solving dynamic problems. The proposed method is designed to easily switch between explicit and implicit forms by adjusting certain control parameters. The remaining control parameters are optimized to ensure that the method would deliver a flawless performance in both forms. This method uses two sub-steps per time step and can directly be used as a first-order and a second-order method, with high capability to suppress spurious responses. The consistency, stability, numerical damping, order of accuracy, amplitude decay, and period elongation are later analyzed for both explicit and implicit forms. Additionally, the proposed method is compared specifically with other widely-used methods with two sub-steps, including both explicit and implicit approaches. Examples are also provided to demonstrate the method’s practicality.</div></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"309 ","pages":"Article 107664"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel explicit-implicit time integration method for solving time-dependent finite element equation: The Versa-δ method\",\"authors\":\"Mohammad Mahdi Malakiyeh, Saeed Shojaee, Saleh Hamzehei-Javaran\",\"doi\":\"10.1016/j.compstruc.2025.107664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we present a novel explicit–implicit time integration method for solving dynamic problems. The proposed method is designed to easily switch between explicit and implicit forms by adjusting certain control parameters. The remaining control parameters are optimized to ensure that the method would deliver a flawless performance in both forms. This method uses two sub-steps per time step and can directly be used as a first-order and a second-order method, with high capability to suppress spurious responses. The consistency, stability, numerical damping, order of accuracy, amplitude decay, and period elongation are later analyzed for both explicit and implicit forms. Additionally, the proposed method is compared specifically with other widely-used methods with two sub-steps, including both explicit and implicit approaches. Examples are also provided to demonstrate the method’s practicality.</div></div>\",\"PeriodicalId\":50626,\"journal\":{\"name\":\"Computers & Structures\",\"volume\":\"309 \",\"pages\":\"Article 107664\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045794925000227\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794925000227","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A novel explicit-implicit time integration method for solving time-dependent finite element equation: The Versa-δ method
In this paper, we present a novel explicit–implicit time integration method for solving dynamic problems. The proposed method is designed to easily switch between explicit and implicit forms by adjusting certain control parameters. The remaining control parameters are optimized to ensure that the method would deliver a flawless performance in both forms. This method uses two sub-steps per time step and can directly be used as a first-order and a second-order method, with high capability to suppress spurious responses. The consistency, stability, numerical damping, order of accuracy, amplitude decay, and period elongation are later analyzed for both explicit and implicit forms. Additionally, the proposed method is compared specifically with other widely-used methods with two sub-steps, including both explicit and implicit approaches. Examples are also provided to demonstrate the method’s practicality.
期刊介绍:
Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.