Al-Cu复合薄膜在Si衬底上的生长:分子动力学模拟

IF 2.7 Q2 PHYSICS, CONDENSED MATTER
M. Lablali , H. Mes-adi , M. Mazroui
{"title":"Al-Cu复合薄膜在Si衬底上的生长:分子动力学模拟","authors":"M. Lablali ,&nbsp;H. Mes-adi ,&nbsp;M. Mazroui","doi":"10.1016/j.micrna.2025.208098","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we have used molecular dynamics simulations to investigate the growth mechanisms of the <span><math><mrow><mtext>AlCu</mtext></mrow></math></span> thin film deposited on a Si (001) substrate with different Al:Cu ratios of (1:1, 2:1, 1:2). The interactions between Al, Cu, and Si atoms have been described using the Modified Embedded Atom Method (MEAM). In this study, we investigate how the different Al–Cu compositions and incident energies affect the morphological, structural, and mechanical characteristics. Our results show that the growth occurs via an island growth mode. At 0.1 eV, the deposited film exhibits a surface containing islands under different Al:Cu ratios. However, the islands gradually disappear as the incident energy increases to 0.4 eV. According to the RDF results, the film maintains its amorphous structure despite film composition and incident energy changes. On the other hand, in terms of interdiffusion, the Al atoms penetrate deeper into the substrate than the Cu atoms. Additionally, as the incident energy increased, the rate of penetration intensified. This increase in incident energy also affects the lattice distortion positions within the substrate matrix and internal stress development. Moreover, <span><math><mrow><msub><mtext>Al</mtext><mn>2</mn></msub><mtext>Cu</mtext></mrow></math></span> exhibits elevated normal stress values compared to the other studied compositions of Al:Cu.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"200 ","pages":"Article 208098"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth of Al–Cu compound thin film on Si substrate: Molecular dynamics simulation\",\"authors\":\"M. Lablali ,&nbsp;H. Mes-adi ,&nbsp;M. Mazroui\",\"doi\":\"10.1016/j.micrna.2025.208098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we have used molecular dynamics simulations to investigate the growth mechanisms of the <span><math><mrow><mtext>AlCu</mtext></mrow></math></span> thin film deposited on a Si (001) substrate with different Al:Cu ratios of (1:1, 2:1, 1:2). The interactions between Al, Cu, and Si atoms have been described using the Modified Embedded Atom Method (MEAM). In this study, we investigate how the different Al–Cu compositions and incident energies affect the morphological, structural, and mechanical characteristics. Our results show that the growth occurs via an island growth mode. At 0.1 eV, the deposited film exhibits a surface containing islands under different Al:Cu ratios. However, the islands gradually disappear as the incident energy increases to 0.4 eV. According to the RDF results, the film maintains its amorphous structure despite film composition and incident energy changes. On the other hand, in terms of interdiffusion, the Al atoms penetrate deeper into the substrate than the Cu atoms. Additionally, as the incident energy increased, the rate of penetration intensified. This increase in incident energy also affects the lattice distortion positions within the substrate matrix and internal stress development. Moreover, <span><math><mrow><msub><mtext>Al</mtext><mn>2</mn></msub><mtext>Cu</mtext></mrow></math></span> exhibits elevated normal stress values compared to the other studied compositions of Al:Cu.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"200 \",\"pages\":\"Article 208098\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012325000275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325000275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们利用分子动力学模拟研究了在不同Al:Cu比为(1:1,2:1,1:2)的Si(001)衬底上沉积AlCu薄膜的生长机制。利用修饰嵌入原子法(MEAM)描述了Al、Cu和Si原子之间的相互作用。在这项研究中,我们研究了不同的Al-Cu成分和入射能量对形貌、结构和力学特性的影响。我们的结果表明,生长是通过岛屿生长模式发生的。在0.1 eV下,在不同Al:Cu比下,沉积膜呈现出含有岛状的表面。随着入射能量增加到0.4 eV,岛屿逐渐消失。根据RDF结果,尽管薄膜成分和入射能量发生了变化,薄膜仍保持其非晶结构。另一方面,在相互扩散方面,Al原子比Cu原子更深入衬底。此外,随着入射能量的增加,穿透率也随之增加。入射能量的增加也会影响衬底基体内的晶格畸变位置和内应力的发展。此外,与Al:Cu的其他组分相比,Al2Cu表现出更高的正常应力值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Growth of Al–Cu compound thin film on Si substrate: Molecular dynamics simulation
In this study, we have used molecular dynamics simulations to investigate the growth mechanisms of the AlCu thin film deposited on a Si (001) substrate with different Al:Cu ratios of (1:1, 2:1, 1:2). The interactions between Al, Cu, and Si atoms have been described using the Modified Embedded Atom Method (MEAM). In this study, we investigate how the different Al–Cu compositions and incident energies affect the morphological, structural, and mechanical characteristics. Our results show that the growth occurs via an island growth mode. At 0.1 eV, the deposited film exhibits a surface containing islands under different Al:Cu ratios. However, the islands gradually disappear as the incident energy increases to 0.4 eV. According to the RDF results, the film maintains its amorphous structure despite film composition and incident energy changes. On the other hand, in terms of interdiffusion, the Al atoms penetrate deeper into the substrate than the Cu atoms. Additionally, as the incident energy increased, the rate of penetration intensified. This increase in incident energy also affects the lattice distortion positions within the substrate matrix and internal stress development. Moreover, Al2Cu exhibits elevated normal stress values compared to the other studied compositions of Al:Cu.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信