国家的不均匀范围:一种映射地方国家存在的新方法

IF 4.6 1区 经济学 Q1 ECONOMICS
Gustav Agneman , Christoffer Cappelen , Kasper Brandt , David Sjöberg
{"title":"国家的不均匀范围:一种映射地方国家存在的新方法","authors":"Gustav Agneman ,&nbsp;Christoffer Cappelen ,&nbsp;Kasper Brandt ,&nbsp;David Sjöberg","doi":"10.1016/j.jdeveco.2025.103453","DOIUrl":null,"url":null,"abstract":"<div><div>The ability of states to exercise authority often varies considerably within their borders, yet we lack reliable empirical measures of the uneven reach of states. In this paper, we develop a methodology to predict state presence at granular spatial resolutions and demonstrate the approach using data from Sub-Saharan Africa. We link a range of indicators of state presence, e.g., infrastructural data, with geolocated survey data of residents’ experiences with subnational governance. Then, we employ a machine learning algorithm that learns how the input variables relate to experienced state presence and extrapolates the predictions to all of Sub-Saharan Africa. We validate the predicted measure through a range of tests and document how local state presence influences development outcomes.</div></div>","PeriodicalId":48418,"journal":{"name":"Journal of Development Economics","volume":"174 ","pages":"Article 103453"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The uneven reach of the state: A novel approach to mapping local state presence\",\"authors\":\"Gustav Agneman ,&nbsp;Christoffer Cappelen ,&nbsp;Kasper Brandt ,&nbsp;David Sjöberg\",\"doi\":\"10.1016/j.jdeveco.2025.103453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The ability of states to exercise authority often varies considerably within their borders, yet we lack reliable empirical measures of the uneven reach of states. In this paper, we develop a methodology to predict state presence at granular spatial resolutions and demonstrate the approach using data from Sub-Saharan Africa. We link a range of indicators of state presence, e.g., infrastructural data, with geolocated survey data of residents’ experiences with subnational governance. Then, we employ a machine learning algorithm that learns how the input variables relate to experienced state presence and extrapolates the predictions to all of Sub-Saharan Africa. We validate the predicted measure through a range of tests and document how local state presence influences development outcomes.</div></div>\",\"PeriodicalId\":48418,\"journal\":{\"name\":\"Journal of Development Economics\",\"volume\":\"174 \",\"pages\":\"Article 103453\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Development Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304387825000045\",\"RegionNum\":1,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Development Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304387825000045","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

国家在其境内行使权力的能力往往差异很大,但我们缺乏可靠的经验衡量标准,以衡量国家权力的不平衡。在本文中,我们开发了一种方法来预测颗粒空间分辨率的状态存在,并使用撒哈拉以南非洲的数据演示了该方法。我们将一系列国家存在的指标(如基础设施数据)与居民对地方治理经验的地理调查数据联系起来。然后,我们采用一种机器学习算法,学习输入变量与经验状态存在的关系,并将预测外推到撒哈拉以南非洲的所有地区。我们通过一系列测试验证预测的度量,并记录地方状态的存在如何影响开发结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The uneven reach of the state: A novel approach to mapping local state presence
The ability of states to exercise authority often varies considerably within their borders, yet we lack reliable empirical measures of the uneven reach of states. In this paper, we develop a methodology to predict state presence at granular spatial resolutions and demonstrate the approach using data from Sub-Saharan Africa. We link a range of indicators of state presence, e.g., infrastructural data, with geolocated survey data of residents’ experiences with subnational governance. Then, we employ a machine learning algorithm that learns how the input variables relate to experienced state presence and extrapolates the predictions to all of Sub-Saharan Africa. We validate the predicted measure through a range of tests and document how local state presence influences development outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
4.00%
发文量
126
审稿时长
72 days
期刊介绍: The Journal of Development Economics publishes papers relating to all aspects of economic development - from immediate policy concerns to structural problems of underdevelopment. The emphasis is on quantitative or analytical work, which is relevant as well as intellectually stimulating.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信