氮化石墨碳的选择性气体吸附:利用人工智能框架探索分子描述符的作用

IF 8.4 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Himanshu M. Nagnure, Tanishq Prasad, Debashis Kundu
{"title":"氮化石墨碳的选择性气体吸附:利用人工智能框架探索分子描述符的作用","authors":"Himanshu M. Nagnure,&nbsp;Tanishq Prasad,&nbsp;Debashis Kundu","doi":"10.1016/j.jenvman.2025.124432","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial Intelligence (AI) frameworks estimate the adsorption energies of crucial pollutants like CO<sub>2</sub>, O<sub>2</sub>, NO, NO<sub>2</sub>, SO<sub>2</sub>F<sub>2</sub>, HCHO, and CO on Graphitic Carbon Nitride (g-C<sub>3</sub>N<sub>4</sub>) surfaces. The predictive capabilities of two AI-based models, namely, Artificial Neural Network (ANN) and ANN coupled with Grey Wolf Optimization (ANN-GWO), are assessed for this purpose. The frameworks are built over 232 data points of adsorption energy collected from Density Function Theory calculations (DFT). Further, molecular descriptors with two-dimensional and three-dimensional descriptors over molecular surfaces are created, serving as structural input for the AI frameworks. Both models, ANN and ANN-GWO, excel in estimating adsorption energies for polar gases such as CO<sub>2</sub>, achieving prediction errors around 10<sup>−7</sup>, while nonpolar gases like NO<sub>2</sub> and HCHO exhibited larger deviations due to electron cloud diffusion. This emphasizes the critical role of molecular polarity in gas-surface interactions. This study underlines the significance of selecting appropriate molecular descriptors for reliable estimation of adsorption characteristics, offering a robust, computationally efficient alternative to conventional methods. The proposed frameworks provide valuable insights into pollutant-gas interactions, paving the way for advancements in material design for environmental applications.</div></div>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"376 ","pages":"Article 124432"},"PeriodicalIF":8.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective gas adsorption using graphitic carbon nitride: Exploring the role of molecular descriptors by artificial intelligence frameworks\",\"authors\":\"Himanshu M. Nagnure,&nbsp;Tanishq Prasad,&nbsp;Debashis Kundu\",\"doi\":\"10.1016/j.jenvman.2025.124432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Artificial Intelligence (AI) frameworks estimate the adsorption energies of crucial pollutants like CO<sub>2</sub>, O<sub>2</sub>, NO, NO<sub>2</sub>, SO<sub>2</sub>F<sub>2</sub>, HCHO, and CO on Graphitic Carbon Nitride (g-C<sub>3</sub>N<sub>4</sub>) surfaces. The predictive capabilities of two AI-based models, namely, Artificial Neural Network (ANN) and ANN coupled with Grey Wolf Optimization (ANN-GWO), are assessed for this purpose. The frameworks are built over 232 data points of adsorption energy collected from Density Function Theory calculations (DFT). Further, molecular descriptors with two-dimensional and three-dimensional descriptors over molecular surfaces are created, serving as structural input for the AI frameworks. Both models, ANN and ANN-GWO, excel in estimating adsorption energies for polar gases such as CO<sub>2</sub>, achieving prediction errors around 10<sup>−7</sup>, while nonpolar gases like NO<sub>2</sub> and HCHO exhibited larger deviations due to electron cloud diffusion. This emphasizes the critical role of molecular polarity in gas-surface interactions. This study underlines the significance of selecting appropriate molecular descriptors for reliable estimation of adsorption characteristics, offering a robust, computationally efficient alternative to conventional methods. The proposed frameworks provide valuable insights into pollutant-gas interactions, paving the way for advancements in material design for environmental applications.</div></div>\",\"PeriodicalId\":356,\"journal\":{\"name\":\"Journal of Environmental Management\",\"volume\":\"376 \",\"pages\":\"Article 124432\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301479725004086\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301479725004086","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)框架估算了关键污染物如CO2、O2、NO、NO2、SO2F2、HCHO和CO在石墨化碳(g-C3N4)表面的吸附能。为此,评估了两种基于人工智能的模型,即人工神经网络(ANN)和人工神经网络与灰狼优化(ANN- gwo)的预测能力。该框架是在密度泛函理论计算(DFT)收集的232个数据点的吸附能上建立的。此外,在分子表面上创建具有二维和三维描述符的分子描述符,作为人工智能框架的结构输入。ANN和ANN- gwo两种模型在估计极性气体(如CO2)的吸附能方面都表现出色,预测误差在10−7左右,而NO2和HCHO等非极性气体由于电子云扩散而表现出较大的偏差。这强调了分子极性在气体表面相互作用中的关键作用。这项研究强调了选择合适的分子描述符对吸附特性可靠估计的重要性,为传统方法提供了一种强大的、计算效率高的替代方法。提出的框架为污染物-气体相互作用提供了有价值的见解,为环境应用材料设计的进步铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Selective gas adsorption using graphitic carbon nitride: Exploring the role of molecular descriptors by artificial intelligence frameworks

Selective gas adsorption using graphitic carbon nitride: Exploring the role of molecular descriptors by artificial intelligence frameworks
Artificial Intelligence (AI) frameworks estimate the adsorption energies of crucial pollutants like CO2, O2, NO, NO2, SO2F2, HCHO, and CO on Graphitic Carbon Nitride (g-C3N4) surfaces. The predictive capabilities of two AI-based models, namely, Artificial Neural Network (ANN) and ANN coupled with Grey Wolf Optimization (ANN-GWO), are assessed for this purpose. The frameworks are built over 232 data points of adsorption energy collected from Density Function Theory calculations (DFT). Further, molecular descriptors with two-dimensional and three-dimensional descriptors over molecular surfaces are created, serving as structural input for the AI frameworks. Both models, ANN and ANN-GWO, excel in estimating adsorption energies for polar gases such as CO2, achieving prediction errors around 10−7, while nonpolar gases like NO2 and HCHO exhibited larger deviations due to electron cloud diffusion. This emphasizes the critical role of molecular polarity in gas-surface interactions. This study underlines the significance of selecting appropriate molecular descriptors for reliable estimation of adsorption characteristics, offering a robust, computationally efficient alternative to conventional methods. The proposed frameworks provide valuable insights into pollutant-gas interactions, paving the way for advancements in material design for environmental applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信