开发用于二氧化碳捕获的非水泥浆

Sahar Foorginezhad, Xiaoyan Ji
{"title":"开发用于二氧化碳捕获的非水泥浆","authors":"Sahar Foorginezhad,&nbsp;Xiaoyan Ji","doi":"10.1016/j.ccst.2025.100385","DOIUrl":null,"url":null,"abstract":"<div><div>The urgency of mitigating CO<sub>2</sub> emissions has become increasingly critical due to their detrimental effects on environmental sustainability and human health. Among emerging solutions, deep eutectic solvents (DESs) have garnered attention for their high CO<sub>2</sub> capture capacities. However, widespread application of DESs has been constrained by their inherent high viscosity and cost. To overcome these limitations, this study further explores the novel strategy, where cosolvent addition and immobilization are combined to develop a non-aqueous slurry for CO<sub>2</sub> capture with high efficiency. Here, [MEACl][EDA] with (1:5) molar ratio is mixed with ethylene glycol (EG) to form a non-aqueous DES solution, and the DES is further immobilized into the mesoporous silica to form a composite and then mixed with the DES-EG solution to make a slurry. The CO<sub>2</sub> capture tests demonstrated 15 wt.% capture capacity at 22 °C and 1 bar, and efficient sorption and desorption rates (0.34 and 0.38 mol CO<sub>2</sub>/(kg sorbent·min) within the initial 2 min). The slurry also exhibited promising cyclic performance with 96.4 % recovery together with minimal solvent loss of 0.97 % and almost intact structure after 120 hr of heating at 110 °C. The improved capture capacity and kinetics, especially for desorption, as well as enhanced thermal stability of the non-aqueous system highlight its potential for industrial applications.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"15 ","pages":"Article 100385"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing non-aqueous slurry for CO2 capture\",\"authors\":\"Sahar Foorginezhad,&nbsp;Xiaoyan Ji\",\"doi\":\"10.1016/j.ccst.2025.100385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The urgency of mitigating CO<sub>2</sub> emissions has become increasingly critical due to their detrimental effects on environmental sustainability and human health. Among emerging solutions, deep eutectic solvents (DESs) have garnered attention for their high CO<sub>2</sub> capture capacities. However, widespread application of DESs has been constrained by their inherent high viscosity and cost. To overcome these limitations, this study further explores the novel strategy, where cosolvent addition and immobilization are combined to develop a non-aqueous slurry for CO<sub>2</sub> capture with high efficiency. Here, [MEACl][EDA] with (1:5) molar ratio is mixed with ethylene glycol (EG) to form a non-aqueous DES solution, and the DES is further immobilized into the mesoporous silica to form a composite and then mixed with the DES-EG solution to make a slurry. The CO<sub>2</sub> capture tests demonstrated 15 wt.% capture capacity at 22 °C and 1 bar, and efficient sorption and desorption rates (0.34 and 0.38 mol CO<sub>2</sub>/(kg sorbent·min) within the initial 2 min). The slurry also exhibited promising cyclic performance with 96.4 % recovery together with minimal solvent loss of 0.97 % and almost intact structure after 120 hr of heating at 110 °C. The improved capture capacity and kinetics, especially for desorption, as well as enhanced thermal stability of the non-aqueous system highlight its potential for industrial applications.</div></div>\",\"PeriodicalId\":9387,\"journal\":{\"name\":\"Carbon Capture Science & Technology\",\"volume\":\"15 \",\"pages\":\"Article 100385\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Capture Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772656825000259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825000259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于二氧化碳排放对环境可持续性和人类健康的有害影响,减少二氧化碳排放的紧迫性已变得越来越重要。在新兴的溶液中,深共晶溶剂(DESs)因其高二氧化碳捕获能力而受到关注。然而,由于其固有的高粘度和高成本,DESs的广泛应用受到了限制。为了克服这些限制,本研究进一步探索了新的策略,将共溶剂添加和固定化相结合,开发出一种高效的非水泥浆,用于二氧化碳捕获。这里,将[MEACl][EDA]以(1:5)摩尔比与乙二醇(EG)混合形成非水DES溶液,将DES进一步固定化到介孔二氧化硅中形成复合材料,再与DES-EG溶液混合制成浆料。在22°C和1 bar条件下,CO2捕获能力为15 wt.%,吸附和解吸速率分别为0.34和0.38 mol CO2/(kg吸附剂·min)。在110℃下加热120小时后,浆料也表现出良好的循环性能,回收率为96.4%,溶剂损失最小,为0.97%,结构几乎完整。改进的捕获能力和动力学,特别是解吸,以及增强的非水系统的热稳定性,突出了其工业应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Developing non-aqueous slurry for CO2 capture

Developing non-aqueous slurry for CO2 capture
The urgency of mitigating CO2 emissions has become increasingly critical due to their detrimental effects on environmental sustainability and human health. Among emerging solutions, deep eutectic solvents (DESs) have garnered attention for their high CO2 capture capacities. However, widespread application of DESs has been constrained by their inherent high viscosity and cost. To overcome these limitations, this study further explores the novel strategy, where cosolvent addition and immobilization are combined to develop a non-aqueous slurry for CO2 capture with high efficiency. Here, [MEACl][EDA] with (1:5) molar ratio is mixed with ethylene glycol (EG) to form a non-aqueous DES solution, and the DES is further immobilized into the mesoporous silica to form a composite and then mixed with the DES-EG solution to make a slurry. The CO2 capture tests demonstrated 15 wt.% capture capacity at 22 °C and 1 bar, and efficient sorption and desorption rates (0.34 and 0.38 mol CO2/(kg sorbent·min) within the initial 2 min). The slurry also exhibited promising cyclic performance with 96.4 % recovery together with minimal solvent loss of 0.97 % and almost intact structure after 120 hr of heating at 110 °C. The improved capture capacity and kinetics, especially for desorption, as well as enhanced thermal stability of the non-aqueous system highlight its potential for industrial applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信