Shilong Li, Kecheng Guan, Dandan Zhou, Dong Zou, Jian Lu, Wenbo Jiang, Bin Chen, Jian Qiu, Lele Cui, Tianxiang Yu, Yuqing Sun*, Zhi Xu, Wanqin Jin and Wenheng Jing*,
{"title":"二维MXenes的晶格空位锚定穿孔制备具有自发多层次特征的纳米通道膜","authors":"Shilong Li, Kecheng Guan, Dandan Zhou, Dong Zou, Jian Lu, Wenbo Jiang, Bin Chen, Jian Qiu, Lele Cui, Tianxiang Yu, Yuqing Sun*, Zhi Xu, Wanqin Jin and Wenheng Jing*, ","doi":"10.1021/acsnano.4c0888510.1021/acsnano.4c08885","DOIUrl":null,"url":null,"abstract":"<p >Two-dimensional (2D) material membranes have significant potential for selectively transporting molecules and ions, crucial for environmental and energy applications significantly. However, challenges such as complex pathways and instability due to weak interactions hinder their performance. This study takes 2D MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>) as a platform and proposes a lattice vacancy-anchored chemical etching method to perforate MXene nanosheets and produce acid cross-linkers simultaneously. The etching process involves H<sub>2</sub>O<sub>2</sub> oxidation consuming Ti atoms from the lattice vacancies of MXene to create peroxo titanic acid (PTA), precisely generating nanopores in the nanosheets for additional transport pathways. At the same time, the produced PTA acts as a cross-linking agent that enhances the interaction between MXene nanosheets to form stabilized interlayer channels. This approach results in multilevel features in the MXene membrane, offering abundant vertical water channels and robust interlayer ion-sieving channels. Consequently, both permeability and selectivity improve nearly 10-fold compared to the pristine membrane, overcoming previous trade-offs. This strategy presents a precise and ingenious method for perforating 2D materials and constructing high-performance mass transport channels of 2D membranes at various levels, benefiting sustainable and highly efficient desalination processes.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 5","pages":"5178–5192 5178–5192"},"PeriodicalIF":16.0000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lattice Vacancy-Anchored Perforation of 2D MXenes for Crafting Nanochannel Membranes with Spontaneous Multi-Level Features\",\"authors\":\"Shilong Li, Kecheng Guan, Dandan Zhou, Dong Zou, Jian Lu, Wenbo Jiang, Bin Chen, Jian Qiu, Lele Cui, Tianxiang Yu, Yuqing Sun*, Zhi Xu, Wanqin Jin and Wenheng Jing*, \",\"doi\":\"10.1021/acsnano.4c0888510.1021/acsnano.4c08885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Two-dimensional (2D) material membranes have significant potential for selectively transporting molecules and ions, crucial for environmental and energy applications significantly. However, challenges such as complex pathways and instability due to weak interactions hinder their performance. This study takes 2D MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>) as a platform and proposes a lattice vacancy-anchored chemical etching method to perforate MXene nanosheets and produce acid cross-linkers simultaneously. The etching process involves H<sub>2</sub>O<sub>2</sub> oxidation consuming Ti atoms from the lattice vacancies of MXene to create peroxo titanic acid (PTA), precisely generating nanopores in the nanosheets for additional transport pathways. At the same time, the produced PTA acts as a cross-linking agent that enhances the interaction between MXene nanosheets to form stabilized interlayer channels. This approach results in multilevel features in the MXene membrane, offering abundant vertical water channels and robust interlayer ion-sieving channels. Consequently, both permeability and selectivity improve nearly 10-fold compared to the pristine membrane, overcoming previous trade-offs. This strategy presents a precise and ingenious method for perforating 2D materials and constructing high-performance mass transport channels of 2D membranes at various levels, benefiting sustainable and highly efficient desalination processes.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 5\",\"pages\":\"5178–5192 5178–5192\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c08885\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c08885","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Lattice Vacancy-Anchored Perforation of 2D MXenes for Crafting Nanochannel Membranes with Spontaneous Multi-Level Features
Two-dimensional (2D) material membranes have significant potential for selectively transporting molecules and ions, crucial for environmental and energy applications significantly. However, challenges such as complex pathways and instability due to weak interactions hinder their performance. This study takes 2D MXene (Ti3C2Tx) as a platform and proposes a lattice vacancy-anchored chemical etching method to perforate MXene nanosheets and produce acid cross-linkers simultaneously. The etching process involves H2O2 oxidation consuming Ti atoms from the lattice vacancies of MXene to create peroxo titanic acid (PTA), precisely generating nanopores in the nanosheets for additional transport pathways. At the same time, the produced PTA acts as a cross-linking agent that enhances the interaction between MXene nanosheets to form stabilized interlayer channels. This approach results in multilevel features in the MXene membrane, offering abundant vertical water channels and robust interlayer ion-sieving channels. Consequently, both permeability and selectivity improve nearly 10-fold compared to the pristine membrane, overcoming previous trade-offs. This strategy presents a precise and ingenious method for perforating 2D materials and constructing high-performance mass transport channels of 2D membranes at various levels, benefiting sustainable and highly efficient desalination processes.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.