Nicolas Schlegel, Stefanie Punke, Christian M. Clausen, Ulrik Friis-Jensen, Adam F. Sapnik, Dragos Stoian, Olivia Aalling-Frederiksen, Divyansh Gautam, Jan Rossmeisl, Rebecca K. Pittkowski, Matthias Arenz* and Kirsten M. Ø. Jensen*,
{"title":"用原位x射线衍射和光谱学跟踪高熵固溶体和高熵金属间化合物的形成","authors":"Nicolas Schlegel, Stefanie Punke, Christian M. Clausen, Ulrik Friis-Jensen, Adam F. Sapnik, Dragos Stoian, Olivia Aalling-Frederiksen, Divyansh Gautam, Jan Rossmeisl, Rebecca K. Pittkowski, Matthias Arenz* and Kirsten M. Ø. Jensen*, ","doi":"10.1021/acs.chemmater.4c0247010.1021/acs.chemmater.4c02470","DOIUrl":null,"url":null,"abstract":"<p >The recent focus on high entropy alloys in the field of electrocatalysis has led to a corresponding increase in the interest in nanosizing these materials. Nevertheless, the precise mechanism by which they are formed at low temperatures remains unclear. In this study, we investigate the formation and subsequent growth of PtFeCoNiPd particles following a facile and industrial-scalable incipient wetness impregnation approach using quasi-simultaneous in situ powder X-ray diffraction and X-ray absorption near-edge structure spectroscopy. The initial formation of crystallite domains with a size of 2–3 nm and an fcc structure, which are rich in Pt and Pd, was observed. A continuous incorporation of the nonprecious elements at elevated temperatures leads to crystallite domain growth while maintaining an fcc structure. Upon reaching a temperature of 330 °C, Bragg peaks corresponding to a face-centered tetragonal phase emerge, indicating a transition to an intermetallic species. The degree of ordering was found to be dependent on the atomic ratio of precious to nonprecious elements in the samples, with the synthesis temperature program also influencing this degree of ordering. This suggests the possibility of a synthetic control.</p>","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"37 3","pages":"939–953 939–953"},"PeriodicalIF":7.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tracking the Formation of High Entropy Solid Solutions and High Entropy Intermetallics by In Situ X-ray Diffraction and Spectroscopy\",\"authors\":\"Nicolas Schlegel, Stefanie Punke, Christian M. Clausen, Ulrik Friis-Jensen, Adam F. Sapnik, Dragos Stoian, Olivia Aalling-Frederiksen, Divyansh Gautam, Jan Rossmeisl, Rebecca K. Pittkowski, Matthias Arenz* and Kirsten M. Ø. Jensen*, \",\"doi\":\"10.1021/acs.chemmater.4c0247010.1021/acs.chemmater.4c02470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The recent focus on high entropy alloys in the field of electrocatalysis has led to a corresponding increase in the interest in nanosizing these materials. Nevertheless, the precise mechanism by which they are formed at low temperatures remains unclear. In this study, we investigate the formation and subsequent growth of PtFeCoNiPd particles following a facile and industrial-scalable incipient wetness impregnation approach using quasi-simultaneous in situ powder X-ray diffraction and X-ray absorption near-edge structure spectroscopy. The initial formation of crystallite domains with a size of 2–3 nm and an fcc structure, which are rich in Pt and Pd, was observed. A continuous incorporation of the nonprecious elements at elevated temperatures leads to crystallite domain growth while maintaining an fcc structure. Upon reaching a temperature of 330 °C, Bragg peaks corresponding to a face-centered tetragonal phase emerge, indicating a transition to an intermetallic species. The degree of ordering was found to be dependent on the atomic ratio of precious to nonprecious elements in the samples, with the synthesis temperature program also influencing this degree of ordering. This suggests the possibility of a synthetic control.</p>\",\"PeriodicalId\":33,\"journal\":{\"name\":\"Chemistry of Materials\",\"volume\":\"37 3\",\"pages\":\"939–953 939–953\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c02470\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c02470","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Tracking the Formation of High Entropy Solid Solutions and High Entropy Intermetallics by In Situ X-ray Diffraction and Spectroscopy
The recent focus on high entropy alloys in the field of electrocatalysis has led to a corresponding increase in the interest in nanosizing these materials. Nevertheless, the precise mechanism by which they are formed at low temperatures remains unclear. In this study, we investigate the formation and subsequent growth of PtFeCoNiPd particles following a facile and industrial-scalable incipient wetness impregnation approach using quasi-simultaneous in situ powder X-ray diffraction and X-ray absorption near-edge structure spectroscopy. The initial formation of crystallite domains with a size of 2–3 nm and an fcc structure, which are rich in Pt and Pd, was observed. A continuous incorporation of the nonprecious elements at elevated temperatures leads to crystallite domain growth while maintaining an fcc structure. Upon reaching a temperature of 330 °C, Bragg peaks corresponding to a face-centered tetragonal phase emerge, indicating a transition to an intermetallic species. The degree of ordering was found to be dependent on the atomic ratio of precious to nonprecious elements in the samples, with the synthesis temperature program also influencing this degree of ordering. This suggests the possibility of a synthetic control.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.