Ritesh Soni, Yun-Tae Kim, Alvo Aabloo, Chinna Bathula, Hyun-Seok Kim, Saikat Sinha Ray*, Young-Nam Kwon* and Chang Young Lee*,
{"title":"使用紫胶基生物粘合剂和分层二氧化硅纳米颗粒的可伸缩和耐用的超疏水涂层","authors":"Ritesh Soni, Yun-Tae Kim, Alvo Aabloo, Chinna Bathula, Hyun-Seok Kim, Saikat Sinha Ray*, Young-Nam Kwon* and Chang Young Lee*, ","doi":"10.1021/acs.langmuir.4c0418010.1021/acs.langmuir.4c04180","DOIUrl":null,"url":null,"abstract":"<p >Superhydrophobic coatings have broad applications across various fields but often face challenges, such as complexity, high cost, low mechanical/thermal stability, toxicity, and environmental hazards. In this study, we demonstrate a simple, scalable, eco-friendly, and durable spray-coating method using bioadhesive shellac and octadecyltrichlorosilane (OTS)-modified silica nanoparticles to create superhydrophobic surfaces. The silica nanoparticles impart superhydrophobicity by forming hierarchical micro/nanostructures and reducing surface free energy, while shellac ensures strong adhesion of the nanoparticles to a wide range of substrates, including nonwoven polypropylene fibers, glass, plastic, metal, wood, cotton, and concrete. The coating exhibits excellent superhydrophobic performance with a large contact angle (162.1°), a small sliding angle (4°), and low contact angle hysteresis (4°). The coated surface retains its superhydrophobicity even after 50 cycles of sandpaper abrasion, heat exposure up to 150 °C, and contact with acidic environments (pH ∼4.2). These biocompatible and eco-friendly superhydrophobic coatings hold promise for use in applications where safety and environmental protection are critical, such as in antifouling, food packaging, and agricultural/biomedical fields.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 5","pages":"3269–3277 3269–3277"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable and Durable Superhydrophobic Coating Using Shellac-Based Bioadhesive and Hierarchical Silica Nanoparticles\",\"authors\":\"Ritesh Soni, Yun-Tae Kim, Alvo Aabloo, Chinna Bathula, Hyun-Seok Kim, Saikat Sinha Ray*, Young-Nam Kwon* and Chang Young Lee*, \",\"doi\":\"10.1021/acs.langmuir.4c0418010.1021/acs.langmuir.4c04180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Superhydrophobic coatings have broad applications across various fields but often face challenges, such as complexity, high cost, low mechanical/thermal stability, toxicity, and environmental hazards. In this study, we demonstrate a simple, scalable, eco-friendly, and durable spray-coating method using bioadhesive shellac and octadecyltrichlorosilane (OTS)-modified silica nanoparticles to create superhydrophobic surfaces. The silica nanoparticles impart superhydrophobicity by forming hierarchical micro/nanostructures and reducing surface free energy, while shellac ensures strong adhesion of the nanoparticles to a wide range of substrates, including nonwoven polypropylene fibers, glass, plastic, metal, wood, cotton, and concrete. The coating exhibits excellent superhydrophobic performance with a large contact angle (162.1°), a small sliding angle (4°), and low contact angle hysteresis (4°). The coated surface retains its superhydrophobicity even after 50 cycles of sandpaper abrasion, heat exposure up to 150 °C, and contact with acidic environments (pH ∼4.2). These biocompatible and eco-friendly superhydrophobic coatings hold promise for use in applications where safety and environmental protection are critical, such as in antifouling, food packaging, and agricultural/biomedical fields.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"41 5\",\"pages\":\"3269–3277 3269–3277\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c04180\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c04180","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Scalable and Durable Superhydrophobic Coating Using Shellac-Based Bioadhesive and Hierarchical Silica Nanoparticles
Superhydrophobic coatings have broad applications across various fields but often face challenges, such as complexity, high cost, low mechanical/thermal stability, toxicity, and environmental hazards. In this study, we demonstrate a simple, scalable, eco-friendly, and durable spray-coating method using bioadhesive shellac and octadecyltrichlorosilane (OTS)-modified silica nanoparticles to create superhydrophobic surfaces. The silica nanoparticles impart superhydrophobicity by forming hierarchical micro/nanostructures and reducing surface free energy, while shellac ensures strong adhesion of the nanoparticles to a wide range of substrates, including nonwoven polypropylene fibers, glass, plastic, metal, wood, cotton, and concrete. The coating exhibits excellent superhydrophobic performance with a large contact angle (162.1°), a small sliding angle (4°), and low contact angle hysteresis (4°). The coated surface retains its superhydrophobicity even after 50 cycles of sandpaper abrasion, heat exposure up to 150 °C, and contact with acidic environments (pH ∼4.2). These biocompatible and eco-friendly superhydrophobic coatings hold promise for use in applications where safety and environmental protection are critical, such as in antifouling, food packaging, and agricultural/biomedical fields.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).