超越表面活性剂:用于功能界面和涂层的Janus颗粒

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Utsav Kumar Dey, Serkan Demirci, Ricardo Ortega, Thamer Rawah, Aneeba Chaudary, Fei Liu, Zhengtao Yang, Bingrui Huang and Shan Jiang*, 
{"title":"超越表面活性剂:用于功能界面和涂层的Janus颗粒","authors":"Utsav Kumar Dey,&nbsp;Serkan Demirci,&nbsp;Ricardo Ortega,&nbsp;Thamer Rawah,&nbsp;Aneeba Chaudary,&nbsp;Fei Liu,&nbsp;Zhengtao Yang,&nbsp;Bingrui Huang and Shan Jiang*,&nbsp;","doi":"10.1021/acs.langmuir.4c0461210.1021/acs.langmuir.4c04612","DOIUrl":null,"url":null,"abstract":"<p >Janus particles (JPs), initially introduced as soft matter, have evolved into a distinctive class of materials that set them apart from traditional surfactants, dispersants, and block copolymers. This mini-review examines the similarities and differences between JPs and their molecular counterparts to elucidate the unique properties of JPs. Key studies on the assembly behavior of JPs in bulk phases and at interfaces are reviewed, highlighting their unique ability to form diverse, complex structures. The superior interfacial stability and tunable amphiphilicity of JPs make them highly effective emulsifiers and dispersants, particularly in emulsion polymerization systems. Beyond these applications, JPs demonstrate immense potential as coating materials, facilitating the development of eco-friendly, anti-icing, and antifouling coatings. A comparative discussion with zwitterionic polymers also highlights the distinctive advantages of each system. This review emphasizes that while JPs mimic some of the behaviors of small molecular surfactants, they also open doors to entirely new applications, making them indispensable as next-generation functional materials.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 5","pages":"2980–2993 2980–2993"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.langmuir.4c04612","citationCount":"0","resultStr":"{\"title\":\"Beyond Surfactants: Janus Particles for Functional Interfaces and Coatings\",\"authors\":\"Utsav Kumar Dey,&nbsp;Serkan Demirci,&nbsp;Ricardo Ortega,&nbsp;Thamer Rawah,&nbsp;Aneeba Chaudary,&nbsp;Fei Liu,&nbsp;Zhengtao Yang,&nbsp;Bingrui Huang and Shan Jiang*,&nbsp;\",\"doi\":\"10.1021/acs.langmuir.4c0461210.1021/acs.langmuir.4c04612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Janus particles (JPs), initially introduced as soft matter, have evolved into a distinctive class of materials that set them apart from traditional surfactants, dispersants, and block copolymers. This mini-review examines the similarities and differences between JPs and their molecular counterparts to elucidate the unique properties of JPs. Key studies on the assembly behavior of JPs in bulk phases and at interfaces are reviewed, highlighting their unique ability to form diverse, complex structures. The superior interfacial stability and tunable amphiphilicity of JPs make them highly effective emulsifiers and dispersants, particularly in emulsion polymerization systems. Beyond these applications, JPs demonstrate immense potential as coating materials, facilitating the development of eco-friendly, anti-icing, and antifouling coatings. A comparative discussion with zwitterionic polymers also highlights the distinctive advantages of each system. This review emphasizes that while JPs mimic some of the behaviors of small molecular surfactants, they also open doors to entirely new applications, making them indispensable as next-generation functional materials.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"41 5\",\"pages\":\"2980–2993 2980–2993\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.langmuir.4c04612\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c04612\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c04612","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Janus粒子(JPs)最初是作为软物质引入的,现在已经发展成为一种独特的材料,将它们与传统的表面活性剂、分散剂和嵌段共聚物区分开来。这篇综述探讨了jp与其分子对应物之间的异同,以阐明jp的独特性质。综述了聚合物在体相和界面上组装行为的关键研究,强调了它们形成多种复杂结构的独特能力。JPs优越的界面稳定性和可调节的两亲性使其成为非常有效的乳化剂和分散剂,特别是在乳液聚合体系中。除了这些应用之外,jp在涂料方面也显示出巨大的潜力,可以促进环保、防结冰和防污涂料的发展。与两性离子聚合物的比较讨论也突出了每种体系的独特优势。这篇综述强调,虽然jp模仿了小分子表面活性剂的一些行为,但它们也为全新的应用打开了大门,使其成为下一代功能材料不可或缺的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beyond Surfactants: Janus Particles for Functional Interfaces and Coatings

Janus particles (JPs), initially introduced as soft matter, have evolved into a distinctive class of materials that set them apart from traditional surfactants, dispersants, and block copolymers. This mini-review examines the similarities and differences between JPs and their molecular counterparts to elucidate the unique properties of JPs. Key studies on the assembly behavior of JPs in bulk phases and at interfaces are reviewed, highlighting their unique ability to form diverse, complex structures. The superior interfacial stability and tunable amphiphilicity of JPs make them highly effective emulsifiers and dispersants, particularly in emulsion polymerization systems. Beyond these applications, JPs demonstrate immense potential as coating materials, facilitating the development of eco-friendly, anti-icing, and antifouling coatings. A comparative discussion with zwitterionic polymers also highlights the distinctive advantages of each system. This review emphasizes that while JPs mimic some of the behaviors of small molecular surfactants, they also open doors to entirely new applications, making them indispensable as next-generation functional materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信