强化光催化析氢富氧ZnO-ZnS空心多孔球的合成策略

IF 4.7 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Yong Xie, Tingwei Wang, Huiquan Li, Chaozhong Sun, Jie Hu, Shunsheng Cao
{"title":"强化光催化析氢富氧ZnO-ZnS空心多孔球的合成策略","authors":"Yong Xie, Tingwei Wang, Huiquan Li, Chaozhong Sun, Jie Hu, Shunsheng Cao","doi":"10.1021/acs.inorgchem.4c05389","DOIUrl":null,"url":null,"abstract":"Constructing a hollow porous ZnO–ZnS sphere is still a big challenge due to the difficulty in controlling the morphology and distribution of ZnO shell originating from the fact that ZnO prefers to grow along particular crystal planes. Here, we demonstrate a novel synthetic strategy for the preparation of oxygen-vacancy-enriched ZnO–ZnS hollow porous (Ov-ZOS (HP)) spheres by combining the concepts of adopting a template-directed method, selecting the sulfidation precursor, and tuning the calcination process of the template. Structural characterization and density functional theory (DFT) calculations reveal that hollow porous nanostructures and oxygen vacancies in the ZnO–ZnS heterojunction are beneficial in promoting efficient charge transfer and separation. The optimized Ov-ZOS (HP) exhibits enhanced rates of hydrogen evolution reaction (71.86 mmol h<sup>–1</sup> g<sup>–1</sup>), which is 1.48, 2.08, and 3.0 times higher than those of ZnO–ZnS hollow porous spheres, oxygen vacancy-enriched ZnO–ZnS nanosheets, ZnO–ZnS nanosheets, respectively. Moreover, the Ov-ZOS (HP) presents excellent cyclability for photocatalytic hydrogen evolution. Therefore, this study provides physical insights into controlling the hollow porous nanostructures of various semiconductor heterojunctions that are hard to form through other existing strategies for solar energy utilization.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"41 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Synthetic Strategies toward Oxygen Vacancy-Enriched ZnO–ZnS Hollow Porous Spheres with Enhanced Photocatalytic Hydrogen Evolution\",\"authors\":\"Yong Xie, Tingwei Wang, Huiquan Li, Chaozhong Sun, Jie Hu, Shunsheng Cao\",\"doi\":\"10.1021/acs.inorgchem.4c05389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constructing a hollow porous ZnO–ZnS sphere is still a big challenge due to the difficulty in controlling the morphology and distribution of ZnO shell originating from the fact that ZnO prefers to grow along particular crystal planes. Here, we demonstrate a novel synthetic strategy for the preparation of oxygen-vacancy-enriched ZnO–ZnS hollow porous (Ov-ZOS (HP)) spheres by combining the concepts of adopting a template-directed method, selecting the sulfidation precursor, and tuning the calcination process of the template. Structural characterization and density functional theory (DFT) calculations reveal that hollow porous nanostructures and oxygen vacancies in the ZnO–ZnS heterojunction are beneficial in promoting efficient charge transfer and separation. The optimized Ov-ZOS (HP) exhibits enhanced rates of hydrogen evolution reaction (71.86 mmol h<sup>–1</sup> g<sup>–1</sup>), which is 1.48, 2.08, and 3.0 times higher than those of ZnO–ZnS hollow porous spheres, oxygen vacancy-enriched ZnO–ZnS nanosheets, ZnO–ZnS nanosheets, respectively. Moreover, the Ov-ZOS (HP) presents excellent cyclability for photocatalytic hydrogen evolution. Therefore, this study provides physical insights into controlling the hollow porous nanostructures of various semiconductor heterojunctions that are hard to form through other existing strategies for solar energy utilization.\",\"PeriodicalId\":40,\"journal\":{\"name\":\"Inorganic Chemistry\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.inorgchem.4c05389\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.4c05389","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

由于ZnO倾向于沿特定的晶体平面生长,因此难以控制ZnO壳的形态和分布,因此构建ZnO - zns空心多孔球仍然是一个很大的挑战。本文通过采用模板导向法、选择硫化前驱体和调整模板的煅烧工艺,提出了一种新的制备富氧ZnO-ZnS空心多孔球(Ov-ZOS (HP))的合成策略。结构表征和密度泛函理论(DFT)计算表明,ZnO-ZnS异质结中的空心多孔纳米结构和氧空位有利于促进有效的电荷转移和分离。优化后的Ov-ZOS (HP)的析氢速率为71.86 mmol h-1 g-1,分别是ZnO-ZnS空心多孔球、富氧ZnO-ZnS纳米片和ZnO-ZnS纳米片的1.48倍、2.08倍和3.0倍。此外,Ov-ZOS (HP)具有良好的光催化析氢循环性。因此,该研究为控制各种半导体异质结的空心多孔纳米结构提供了物理见解,这些结构很难通过其他现有的太阳能利用策略形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Generalized Synthetic Strategies toward Oxygen Vacancy-Enriched ZnO–ZnS Hollow Porous Spheres with Enhanced Photocatalytic Hydrogen Evolution

Generalized Synthetic Strategies toward Oxygen Vacancy-Enriched ZnO–ZnS Hollow Porous Spheres with Enhanced Photocatalytic Hydrogen Evolution
Constructing a hollow porous ZnO–ZnS sphere is still a big challenge due to the difficulty in controlling the morphology and distribution of ZnO shell originating from the fact that ZnO prefers to grow along particular crystal planes. Here, we demonstrate a novel synthetic strategy for the preparation of oxygen-vacancy-enriched ZnO–ZnS hollow porous (Ov-ZOS (HP)) spheres by combining the concepts of adopting a template-directed method, selecting the sulfidation precursor, and tuning the calcination process of the template. Structural characterization and density functional theory (DFT) calculations reveal that hollow porous nanostructures and oxygen vacancies in the ZnO–ZnS heterojunction are beneficial in promoting efficient charge transfer and separation. The optimized Ov-ZOS (HP) exhibits enhanced rates of hydrogen evolution reaction (71.86 mmol h–1 g–1), which is 1.48, 2.08, and 3.0 times higher than those of ZnO–ZnS hollow porous spheres, oxygen vacancy-enriched ZnO–ZnS nanosheets, ZnO–ZnS nanosheets, respectively. Moreover, the Ov-ZOS (HP) presents excellent cyclability for photocatalytic hydrogen evolution. Therefore, this study provides physical insights into controlling the hollow porous nanostructures of various semiconductor heterojunctions that are hard to form through other existing strategies for solar energy utilization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信