Lihua Niu , Jiayan Shen , Yi Li , Yamei Chen , Wenlong Zhang , Longfei Wang
{"title":"塑料添加剂改变了天然河流中光降解对聚乙烯/聚丙烯聚合物生物降解的影响","authors":"Lihua Niu , Jiayan Shen , Yi Li , Yamei Chen , Wenlong Zhang , Longfei Wang","doi":"10.1016/j.jhazmat.2025.137542","DOIUrl":null,"url":null,"abstract":"<div><div>The biodegradation of microplastics in river sediments was subject to the prior photodegradation in surface water and can be greatly affected by polymers and additives. However, the understanding of the effects of additives on the cascade photo- and biodegradation processes remains limited. In this study, the characteristics of morphology, functional groups, and indictive degrading bacteria of polyethylene (PE) and polypropylene (PP) were detected to analyze the effects of Dioctyl phthalate (DOP), Bisphenol A (BPA) and Benzotriazole (BTA), on the single and cascade photo- and biodegradation processes of PP/PE films (PP/PE<sub>P</sub>, PP/PE<sub>B</sub>, PP/PE<sub>PB</sub>). The results showed that photodegradation enhanced the biodegradation, by creating smaller fractions which induced the proliferation of new PP/PE-degrading bacteria (P-bacteria). Compared to the general PP/PE-degrading bacteria, P-bacteria displayed higher standard betweenness centrality and carbon metabolism. Among the three additives, DOP most obviously promoted photo- and biodegradation processes, followed by BPA. BTA inhibited the photodegradation to biodegradation by absorbing UV light. Overall, these findings provide insights into the nonnegligible joint influence of photodegradation and additives on the biodegradation of PP/PE resins in natural rivers.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"489 ","pages":"Article 137542"},"PeriodicalIF":11.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plastic additives alter the influence of photodegradation on biodegradation of polyethylene/polypropylene polymers in natural rivers\",\"authors\":\"Lihua Niu , Jiayan Shen , Yi Li , Yamei Chen , Wenlong Zhang , Longfei Wang\",\"doi\":\"10.1016/j.jhazmat.2025.137542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The biodegradation of microplastics in river sediments was subject to the prior photodegradation in surface water and can be greatly affected by polymers and additives. However, the understanding of the effects of additives on the cascade photo- and biodegradation processes remains limited. In this study, the characteristics of morphology, functional groups, and indictive degrading bacteria of polyethylene (PE) and polypropylene (PP) were detected to analyze the effects of Dioctyl phthalate (DOP), Bisphenol A (BPA) and Benzotriazole (BTA), on the single and cascade photo- and biodegradation processes of PP/PE films (PP/PE<sub>P</sub>, PP/PE<sub>B</sub>, PP/PE<sub>PB</sub>). The results showed that photodegradation enhanced the biodegradation, by creating smaller fractions which induced the proliferation of new PP/PE-degrading bacteria (P-bacteria). Compared to the general PP/PE-degrading bacteria, P-bacteria displayed higher standard betweenness centrality and carbon metabolism. Among the three additives, DOP most obviously promoted photo- and biodegradation processes, followed by BPA. BTA inhibited the photodegradation to biodegradation by absorbing UV light. Overall, these findings provide insights into the nonnegligible joint influence of photodegradation and additives on the biodegradation of PP/PE resins in natural rivers.</div></div>\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"489 \",\"pages\":\"Article 137542\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304389425004546\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389425004546","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Plastic additives alter the influence of photodegradation on biodegradation of polyethylene/polypropylene polymers in natural rivers
The biodegradation of microplastics in river sediments was subject to the prior photodegradation in surface water and can be greatly affected by polymers and additives. However, the understanding of the effects of additives on the cascade photo- and biodegradation processes remains limited. In this study, the characteristics of morphology, functional groups, and indictive degrading bacteria of polyethylene (PE) and polypropylene (PP) were detected to analyze the effects of Dioctyl phthalate (DOP), Bisphenol A (BPA) and Benzotriazole (BTA), on the single and cascade photo- and biodegradation processes of PP/PE films (PP/PEP, PP/PEB, PP/PEPB). The results showed that photodegradation enhanced the biodegradation, by creating smaller fractions which induced the proliferation of new PP/PE-degrading bacteria (P-bacteria). Compared to the general PP/PE-degrading bacteria, P-bacteria displayed higher standard betweenness centrality and carbon metabolism. Among the three additives, DOP most obviously promoted photo- and biodegradation processes, followed by BPA. BTA inhibited the photodegradation to biodegradation by absorbing UV light. Overall, these findings provide insights into the nonnegligible joint influence of photodegradation and additives on the biodegradation of PP/PE resins in natural rivers.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.