Luisa Pflumm, Hyeonmin Kang, Andreas Wilting, Jürgen Niedballa
{"title":"GEE-PICX:生成无云的Sentinel-2和Landsat图像合成和光谱指数,用于定制区域和时间框架——一个谷歌Earth Engine web应用程序","authors":"Luisa Pflumm, Hyeonmin Kang, Andreas Wilting, Jürgen Niedballa","doi":"10.1111/ecog.07385","DOIUrl":null,"url":null,"abstract":"<p>Earth observation satellites are collecting vast amounts of free and openly accessible data with immense potential to support environmental, economic, and social fields. As the availability of remotely sensed data increases, so do the methods for accessing and processing it. Many solutions exist for creating cloud-free image composites from often cloudy satellite data, but these typically require coding skills or in-depth training in remote-sensing techniques. This technical barrier prevents many researchers and practitioners from utilising available satellite data. The few user-friendly solutions that exist often have limitations in terms of data export size and quality assessment capabilities. We developed GEE-PICX, a web application with an intuitive graphical user interface on the cloud computing platform Google Earth Engine. This tool addresses the aforementioned challenges by creating cloud-free, analysis-ready image composites for user-defined areas and time periods. It utilises Sentinel-2 and Landsat 5, 7, 8, and 9 images and offers global coverage. Users can aggregate image composites annually or seasonally, with data availability starting from 1984 (the launch of Landsat 5). The workflow automatically filters all available satellite data according to user input, removing clouds, cloud shadows, and snow. It provides spectral band information, calculates various thematic spectral indices (including vegetation, burn, built-up area, bare soil, snow, moisture, and water indices), and includes a quality assessment band indicating the number of valid scenes per pixel. GEE-PICX offers a customizable tool for creating custom data products from freely accessible satellite data, catering to researchers with limited remote sensing experience. It provides extensive temporal and global spatial coverage, with server-side processing eliminating hardware constraints. The tool facilitates easy export of time series as ready-to-use rasters with numerous spectral indices, supporting environmental programmes and biodiversity research across various disciplines.</p><p>Keywords: cloud masking, cloud-free image mosaic, environmental monitoring, remote sensing, satellite imagery, time series</p>","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"2025 5","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ecog.07385","citationCount":"0","resultStr":"{\"title\":\"GEE-PICX: generating cloud-free Sentinel-2 and Landsat image composites and spectral indices for custom areas and time frames – a Google Earth Engine web application\",\"authors\":\"Luisa Pflumm, Hyeonmin Kang, Andreas Wilting, Jürgen Niedballa\",\"doi\":\"10.1111/ecog.07385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Earth observation satellites are collecting vast amounts of free and openly accessible data with immense potential to support environmental, economic, and social fields. As the availability of remotely sensed data increases, so do the methods for accessing and processing it. Many solutions exist for creating cloud-free image composites from often cloudy satellite data, but these typically require coding skills or in-depth training in remote-sensing techniques. This technical barrier prevents many researchers and practitioners from utilising available satellite data. The few user-friendly solutions that exist often have limitations in terms of data export size and quality assessment capabilities. We developed GEE-PICX, a web application with an intuitive graphical user interface on the cloud computing platform Google Earth Engine. This tool addresses the aforementioned challenges by creating cloud-free, analysis-ready image composites for user-defined areas and time periods. It utilises Sentinel-2 and Landsat 5, 7, 8, and 9 images and offers global coverage. Users can aggregate image composites annually or seasonally, with data availability starting from 1984 (the launch of Landsat 5). The workflow automatically filters all available satellite data according to user input, removing clouds, cloud shadows, and snow. It provides spectral band information, calculates various thematic spectral indices (including vegetation, burn, built-up area, bare soil, snow, moisture, and water indices), and includes a quality assessment band indicating the number of valid scenes per pixel. GEE-PICX offers a customizable tool for creating custom data products from freely accessible satellite data, catering to researchers with limited remote sensing experience. It provides extensive temporal and global spatial coverage, with server-side processing eliminating hardware constraints. The tool facilitates easy export of time series as ready-to-use rasters with numerous spectral indices, supporting environmental programmes and biodiversity research across various disciplines.</p><p>Keywords: cloud masking, cloud-free image mosaic, environmental monitoring, remote sensing, satellite imagery, time series</p>\",\"PeriodicalId\":51026,\"journal\":{\"name\":\"Ecography\",\"volume\":\"2025 5\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ecog.07385\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecography\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ecog.07385\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ecog.07385","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
GEE-PICX: generating cloud-free Sentinel-2 and Landsat image composites and spectral indices for custom areas and time frames – a Google Earth Engine web application
Earth observation satellites are collecting vast amounts of free and openly accessible data with immense potential to support environmental, economic, and social fields. As the availability of remotely sensed data increases, so do the methods for accessing and processing it. Many solutions exist for creating cloud-free image composites from often cloudy satellite data, but these typically require coding skills or in-depth training in remote-sensing techniques. This technical barrier prevents many researchers and practitioners from utilising available satellite data. The few user-friendly solutions that exist often have limitations in terms of data export size and quality assessment capabilities. We developed GEE-PICX, a web application with an intuitive graphical user interface on the cloud computing platform Google Earth Engine. This tool addresses the aforementioned challenges by creating cloud-free, analysis-ready image composites for user-defined areas and time periods. It utilises Sentinel-2 and Landsat 5, 7, 8, and 9 images and offers global coverage. Users can aggregate image composites annually or seasonally, with data availability starting from 1984 (the launch of Landsat 5). The workflow automatically filters all available satellite data according to user input, removing clouds, cloud shadows, and snow. It provides spectral band information, calculates various thematic spectral indices (including vegetation, burn, built-up area, bare soil, snow, moisture, and water indices), and includes a quality assessment band indicating the number of valid scenes per pixel. GEE-PICX offers a customizable tool for creating custom data products from freely accessible satellite data, catering to researchers with limited remote sensing experience. It provides extensive temporal and global spatial coverage, with server-side processing eliminating hardware constraints. The tool facilitates easy export of time series as ready-to-use rasters with numerous spectral indices, supporting environmental programmes and biodiversity research across various disciplines.
Keywords: cloud masking, cloud-free image mosaic, environmental monitoring, remote sensing, satellite imagery, time series
期刊介绍:
ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem.
Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography.
Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.