人工智能可以准确识别肺癌组织学图像中的可靶向改变

IF 81.1 1区 医学 Q1 ONCOLOGY
Hortense Le, Aristotelis Tsirigos
{"title":"人工智能可以准确识别肺癌组织学图像中的可靶向改变","authors":"Hortense Le, Aristotelis Tsirigos","doi":"10.1038/s41571-025-00999-y","DOIUrl":null,"url":null,"abstract":"DeepGEM, an artificial intelligence (AI)-based model, accurately predicts the presence of key genomic alterations in histological slides prepared from samples obtained from patients with lung cancer. This approach provides a cost-effective alternative to genomic testing, generates spatial mutation maps and might support personalized treatment strategies. Validated in diverse datasets, DeepGEM highlights the potential of AI to transform precision oncology and improve global healthcare equity.","PeriodicalId":19079,"journal":{"name":"Nature Reviews Clinical Oncology","volume":"22 4","pages":"239-240"},"PeriodicalIF":81.1000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI accurately identifies targetable alterations in lung cancer histological images\",\"authors\":\"Hortense Le, Aristotelis Tsirigos\",\"doi\":\"10.1038/s41571-025-00999-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DeepGEM, an artificial intelligence (AI)-based model, accurately predicts the presence of key genomic alterations in histological slides prepared from samples obtained from patients with lung cancer. This approach provides a cost-effective alternative to genomic testing, generates spatial mutation maps and might support personalized treatment strategies. Validated in diverse datasets, DeepGEM highlights the potential of AI to transform precision oncology and improve global healthcare equity.\",\"PeriodicalId\":19079,\"journal\":{\"name\":\"Nature Reviews Clinical Oncology\",\"volume\":\"22 4\",\"pages\":\"239-240\"},\"PeriodicalIF\":81.1000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Clinical Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41571-025-00999-y\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Clinical Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41571-025-00999-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

DeepGEM是一种基于人工智能(AI)的模型,可以准确预测肺癌患者样本制备的组织学切片中关键基因组改变的存在。这种方法为基因组检测提供了一种经济有效的替代方法,可以生成空间突变图,并可能支持个性化治疗策略。DeepGEM在不同的数据集上进行了验证,突显了人工智能在改变精准肿瘤学和改善全球医疗公平方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI accurately identifies targetable alterations in lung cancer histological images
DeepGEM, an artificial intelligence (AI)-based model, accurately predicts the presence of key genomic alterations in histological slides prepared from samples obtained from patients with lung cancer. This approach provides a cost-effective alternative to genomic testing, generates spatial mutation maps and might support personalized treatment strategies. Validated in diverse datasets, DeepGEM highlights the potential of AI to transform precision oncology and improve global healthcare equity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
99.40
自引率
0.40%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Nature Reviews publishes clinical content authored by internationally renowned clinical academics and researchers, catering to readers in the medical sciences at postgraduate levels and beyond. Although targeted at practicing doctors, researchers, and academics within specific specialties, the aim is to ensure accessibility for readers across various medical disciplines. The journal features in-depth Reviews offering authoritative and current information, contextualizing topics within the history and development of a field. Perspectives, News & Views articles, and the Research Highlights section provide topical discussions, opinions, and filtered primary research from diverse medical journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信