Junhui Ma , Ruixue Zhu , Meijing Li , Hui Jiao , Sijun Fan , Xiang Ma , Guangya Xiang
{"title":"靶向蛋白水解嵌合体-阿霉素偶联纳米组件双重治疗EGFR-TKI敏感和耐药非小细胞肺癌。","authors":"Junhui Ma , Ruixue Zhu , Meijing Li , Hui Jiao , Sijun Fan , Xiang Ma , Guangya Xiang","doi":"10.1016/j.actbio.2025.02.012","DOIUrl":null,"url":null,"abstract":"<div><div>Proteolysis-targeting chimeras (PROTACs) have emerged as a promising strategy for targeted protein degradation and drug discovery. However, traditional PROTACs face inherent limitations and may also contribute to induce drug resistance. These challenges have driven the development of innovative strategies to overcome these obstacles. In current study, a PROTAC-DOX conjugates (PDCs) nanoassembly strategy was introduced to enhance tumor-targeting capability and overcome the drawbacks of conventional PROTACs. The designed PDC-S nanoparticles (PDC-S NPs) demonstrated potent anti-tumor activity against drug-resistant strains (IC<sub>50</sub> = 4.7 µM) and improved in vivo efficacy (TGI = 76 %) against drug-sensitive strains, while minimizing side effects. Additionally, PDC-S NPs have great potential in tumor immunotherapy. This study provides a novel and promising strategy for the development of PROTAC-Drug Conjugates (PDCs).</div></div><div><h3>Statement of significance</h3><div>We developed a PROTAC-DOX conjugates (PDCs) nanoassembly strategy to address the limitations of traditional PROTACs, such as poor solubility, low targeting specificity, and drug resistance. PDC-S NPs were constructed via self-assembly, which simplified preparation and minimized the toxicity typically associated with carrier-assisted delivery systems. The PDC-S NPs showed improved aqueous solubility and cellular uptake, resulting in efficient EGFR degradation in HCC827 cells. In vivo, PDC-S NPs accumulated at tumor sites via the EPR effect, resulting in enhanced anti-tumor potency with reduced side effects. Furthermore, PDC-S NPs induced immunogenic cell death (ICD) and suppressed PD-L1 and VEGF expression, highlighting great potential in tumor immunotherapy.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"195 ","pages":"Pages 421-435"},"PeriodicalIF":9.6000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proteolysis-targeting chimera-doxorubicin conjugate nanoassemblies for dual treatment of EGFR-TKI sensitive and resistant non-small cell lung cancer\",\"authors\":\"Junhui Ma , Ruixue Zhu , Meijing Li , Hui Jiao , Sijun Fan , Xiang Ma , Guangya Xiang\",\"doi\":\"10.1016/j.actbio.2025.02.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Proteolysis-targeting chimeras (PROTACs) have emerged as a promising strategy for targeted protein degradation and drug discovery. However, traditional PROTACs face inherent limitations and may also contribute to induce drug resistance. These challenges have driven the development of innovative strategies to overcome these obstacles. In current study, a PROTAC-DOX conjugates (PDCs) nanoassembly strategy was introduced to enhance tumor-targeting capability and overcome the drawbacks of conventional PROTACs. The designed PDC-S nanoparticles (PDC-S NPs) demonstrated potent anti-tumor activity against drug-resistant strains (IC<sub>50</sub> = 4.7 µM) and improved in vivo efficacy (TGI = 76 %) against drug-sensitive strains, while minimizing side effects. Additionally, PDC-S NPs have great potential in tumor immunotherapy. This study provides a novel and promising strategy for the development of PROTAC-Drug Conjugates (PDCs).</div></div><div><h3>Statement of significance</h3><div>We developed a PROTAC-DOX conjugates (PDCs) nanoassembly strategy to address the limitations of traditional PROTACs, such as poor solubility, low targeting specificity, and drug resistance. PDC-S NPs were constructed via self-assembly, which simplified preparation and minimized the toxicity typically associated with carrier-assisted delivery systems. The PDC-S NPs showed improved aqueous solubility and cellular uptake, resulting in efficient EGFR degradation in HCC827 cells. In vivo, PDC-S NPs accumulated at tumor sites via the EPR effect, resulting in enhanced anti-tumor potency with reduced side effects. Furthermore, PDC-S NPs induced immunogenic cell death (ICD) and suppressed PD-L1 and VEGF expression, highlighting great potential in tumor immunotherapy.</div></div>\",\"PeriodicalId\":237,\"journal\":{\"name\":\"Acta Biomaterialia\",\"volume\":\"195 \",\"pages\":\"Pages 421-435\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Biomaterialia\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1742706125000972\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706125000972","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Proteolysis-targeting chimera-doxorubicin conjugate nanoassemblies for dual treatment of EGFR-TKI sensitive and resistant non-small cell lung cancer
Proteolysis-targeting chimeras (PROTACs) have emerged as a promising strategy for targeted protein degradation and drug discovery. However, traditional PROTACs face inherent limitations and may also contribute to induce drug resistance. These challenges have driven the development of innovative strategies to overcome these obstacles. In current study, a PROTAC-DOX conjugates (PDCs) nanoassembly strategy was introduced to enhance tumor-targeting capability and overcome the drawbacks of conventional PROTACs. The designed PDC-S nanoparticles (PDC-S NPs) demonstrated potent anti-tumor activity against drug-resistant strains (IC50 = 4.7 µM) and improved in vivo efficacy (TGI = 76 %) against drug-sensitive strains, while minimizing side effects. Additionally, PDC-S NPs have great potential in tumor immunotherapy. This study provides a novel and promising strategy for the development of PROTAC-Drug Conjugates (PDCs).
Statement of significance
We developed a PROTAC-DOX conjugates (PDCs) nanoassembly strategy to address the limitations of traditional PROTACs, such as poor solubility, low targeting specificity, and drug resistance. PDC-S NPs were constructed via self-assembly, which simplified preparation and minimized the toxicity typically associated with carrier-assisted delivery systems. The PDC-S NPs showed improved aqueous solubility and cellular uptake, resulting in efficient EGFR degradation in HCC827 cells. In vivo, PDC-S NPs accumulated at tumor sites via the EPR effect, resulting in enhanced anti-tumor potency with reduced side effects. Furthermore, PDC-S NPs induced immunogenic cell death (ICD) and suppressed PD-L1 and VEGF expression, highlighting great potential in tumor immunotherapy.
期刊介绍:
Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.