{"title":"在皮层发育过程中,Pax6通过与Wnt3a相互作用调控神经元迁移和细胞增殖。","authors":"Bichao Zhang, Meihua Hou, Jiayan Huang, Yunfei Liu, Ciqing Yang, Juntang Lin","doi":"10.1038/s41598-025-88662-5","DOIUrl":null,"url":null,"abstract":"<p><p>The paired box 6 (Pax6) gene encodes a highly conserved transcription factor, involved in the development of eyes, brain, and endocrine glands. Homozygous loss of Pax6 resulted in neonatal death in mice, plus loss of eyes and malformation of cerebral cortex. In patients with heterozygous Pax6 mutations, a reduction in thickness of the frontoparietal cortex was detected, which was also observed in small eye mice. In this study, we found that Pax6 overexpression increased the cortical thickness, especially in the intermediate zone of the cortex, which conflicts with the report of Manuel et al. Pax6 overexpression appears to detain neurons in the intermediate zone while promoting cell proliferation. It is worth noting that the impact of Pax6 overexpression on cortical thickness and neuronal migration was temporal, explaining the differences with other reports. We postulated that the alteration of Pax6 isoform ratio by autoregulation might be responsible for this. JASPAR analysis together with the results of qPCR, Western blot, CUT&Tag, and rescue experiments revealed that Pax6 regulates neuronal migration and cell proliferation by indirectly mediating Wnt3a expression. Therefore, we propose that Pax6 participates in corticogenesis via interaction with Wnt3a in regulating neuronal migration and cell proliferation.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"4726"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11807113/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pax6 regulates neuronal migration and cell proliferation via interacting with Wnt3a during cortical development.\",\"authors\":\"Bichao Zhang, Meihua Hou, Jiayan Huang, Yunfei Liu, Ciqing Yang, Juntang Lin\",\"doi\":\"10.1038/s41598-025-88662-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The paired box 6 (Pax6) gene encodes a highly conserved transcription factor, involved in the development of eyes, brain, and endocrine glands. Homozygous loss of Pax6 resulted in neonatal death in mice, plus loss of eyes and malformation of cerebral cortex. In patients with heterozygous Pax6 mutations, a reduction in thickness of the frontoparietal cortex was detected, which was also observed in small eye mice. In this study, we found that Pax6 overexpression increased the cortical thickness, especially in the intermediate zone of the cortex, which conflicts with the report of Manuel et al. Pax6 overexpression appears to detain neurons in the intermediate zone while promoting cell proliferation. It is worth noting that the impact of Pax6 overexpression on cortical thickness and neuronal migration was temporal, explaining the differences with other reports. We postulated that the alteration of Pax6 isoform ratio by autoregulation might be responsible for this. JASPAR analysis together with the results of qPCR, Western blot, CUT&Tag, and rescue experiments revealed that Pax6 regulates neuronal migration and cell proliferation by indirectly mediating Wnt3a expression. Therefore, we propose that Pax6 participates in corticogenesis via interaction with Wnt3a in regulating neuronal migration and cell proliferation.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"4726\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11807113/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-88662-5\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-88662-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Pax6 regulates neuronal migration and cell proliferation via interacting with Wnt3a during cortical development.
The paired box 6 (Pax6) gene encodes a highly conserved transcription factor, involved in the development of eyes, brain, and endocrine glands. Homozygous loss of Pax6 resulted in neonatal death in mice, plus loss of eyes and malformation of cerebral cortex. In patients with heterozygous Pax6 mutations, a reduction in thickness of the frontoparietal cortex was detected, which was also observed in small eye mice. In this study, we found that Pax6 overexpression increased the cortical thickness, especially in the intermediate zone of the cortex, which conflicts with the report of Manuel et al. Pax6 overexpression appears to detain neurons in the intermediate zone while promoting cell proliferation. It is worth noting that the impact of Pax6 overexpression on cortical thickness and neuronal migration was temporal, explaining the differences with other reports. We postulated that the alteration of Pax6 isoform ratio by autoregulation might be responsible for this. JASPAR analysis together with the results of qPCR, Western blot, CUT&Tag, and rescue experiments revealed that Pax6 regulates neuronal migration and cell proliferation by indirectly mediating Wnt3a expression. Therefore, we propose that Pax6 participates in corticogenesis via interaction with Wnt3a in regulating neuronal migration and cell proliferation.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.