{"title":"工作记忆中对称和不对称加工的神经认知动力学和行为差异:来自近红外光谱的见解。","authors":"Izabela Maria Sztuka, Simone Kühn","doi":"10.1038/s41598-024-84988-8","DOIUrl":null,"url":null,"abstract":"<p><p>Symmetry is a ubiquitous property of the visual world. It facilitates cognitive processing and fosters aesthetic appeal. Despite its importance to aesthetic experience and perceptual prominence, the integration of symmetry in working memory remains underexplored. In our study, participants engaged in a novel working memory task involving both symmetrical and asymmetrical stimuli, while their brain activity was monitored using functional Near Infrared Spectroscopy (fNIRS). The study revealed that symmetry significantly enhances memory performance. Symmetry significantly improves task performance, with symmetrical stimuli leading to higher accuracy and faster recall than asymmetrical ones, especially under high cognitive load. This effect varies with the type of symmetry, with diagonal symmetry being the most effective. Neuroimaging data showed distinct brain activation patterns when participants processed symmetrical stimuli, particularly in the memory-straining condition. Significant differences in brain activity were observed in various brain regions, with lateral occipital, posterior parietal, medial and dorsolateral prefrontal cortices reacting to symmetry with decreased oxygenated hemoglobin (HbO), while in left orbitofrontal (HbO) and right ventrolateral prefrontal cortex (HbO and HbR) hemoglobin concentration increased. Overall, our findings highlight the complex, region-specific brain activation patterns in response to visual symmetry, emphasizing the nuanced role of symmetry in cognitive processing during memory tasks and their potential implication for creative thinking.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"4740"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11807122/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neurocognitive dynamics and behavioral differences of symmetry and asymmetry processing in working memory: insights from fNIRS.\",\"authors\":\"Izabela Maria Sztuka, Simone Kühn\",\"doi\":\"10.1038/s41598-024-84988-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Symmetry is a ubiquitous property of the visual world. It facilitates cognitive processing and fosters aesthetic appeal. Despite its importance to aesthetic experience and perceptual prominence, the integration of symmetry in working memory remains underexplored. In our study, participants engaged in a novel working memory task involving both symmetrical and asymmetrical stimuli, while their brain activity was monitored using functional Near Infrared Spectroscopy (fNIRS). The study revealed that symmetry significantly enhances memory performance. Symmetry significantly improves task performance, with symmetrical stimuli leading to higher accuracy and faster recall than asymmetrical ones, especially under high cognitive load. This effect varies with the type of symmetry, with diagonal symmetry being the most effective. Neuroimaging data showed distinct brain activation patterns when participants processed symmetrical stimuli, particularly in the memory-straining condition. Significant differences in brain activity were observed in various brain regions, with lateral occipital, posterior parietal, medial and dorsolateral prefrontal cortices reacting to symmetry with decreased oxygenated hemoglobin (HbO), while in left orbitofrontal (HbO) and right ventrolateral prefrontal cortex (HbO and HbR) hemoglobin concentration increased. Overall, our findings highlight the complex, region-specific brain activation patterns in response to visual symmetry, emphasizing the nuanced role of symmetry in cognitive processing during memory tasks and their potential implication for creative thinking.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"4740\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11807122/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-84988-8\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-84988-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Neurocognitive dynamics and behavioral differences of symmetry and asymmetry processing in working memory: insights from fNIRS.
Symmetry is a ubiquitous property of the visual world. It facilitates cognitive processing and fosters aesthetic appeal. Despite its importance to aesthetic experience and perceptual prominence, the integration of symmetry in working memory remains underexplored. In our study, participants engaged in a novel working memory task involving both symmetrical and asymmetrical stimuli, while their brain activity was monitored using functional Near Infrared Spectroscopy (fNIRS). The study revealed that symmetry significantly enhances memory performance. Symmetry significantly improves task performance, with symmetrical stimuli leading to higher accuracy and faster recall than asymmetrical ones, especially under high cognitive load. This effect varies with the type of symmetry, with diagonal symmetry being the most effective. Neuroimaging data showed distinct brain activation patterns when participants processed symmetrical stimuli, particularly in the memory-straining condition. Significant differences in brain activity were observed in various brain regions, with lateral occipital, posterior parietal, medial and dorsolateral prefrontal cortices reacting to symmetry with decreased oxygenated hemoglobin (HbO), while in left orbitofrontal (HbO) and right ventrolateral prefrontal cortex (HbO and HbR) hemoglobin concentration increased. Overall, our findings highlight the complex, region-specific brain activation patterns in response to visual symmetry, emphasizing the nuanced role of symmetry in cognitive processing during memory tasks and their potential implication for creative thinking.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.