Parisa Khateri, Tiana Koottungal, Damon Wong, Rupert W Strauss, Lucas Janeschitz-Kriegl, Maximilian Pfau, Leopold Schmetterer, Hendrik P N Scholl
{"title":"用病理学感知人工智能方法分析Stargardt病的OCT视网膜图像。","authors":"Parisa Khateri, Tiana Koottungal, Damon Wong, Rupert W Strauss, Lucas Janeschitz-Kriegl, Maximilian Pfau, Leopold Schmetterer, Hendrik P N Scholl","doi":"10.1038/s41598-025-85213-w","DOIUrl":null,"url":null,"abstract":"<p><p>Stargardt disease type 1 (STGD1) is a genetic disorder that leads to progressive vision loss, with no approved treatments currently available. The development of effective therapies faces the challenge of identifying appropriate outcome measures that accurately reflect treatment benefits. Optical Coherence Tomography (OCT) provides high-resolution retinal images, serving as a valuable tool for deriving potential outcome measures, such as retinal thickness. However, automated segmentation of OCT images, particularly in regions disrupted by degeneration, remains complex. In this study, we propose a deep learning-based approach that incorporates a pathology-aware loss function to segment retinal sublayers in OCT images from patients with STGD1. This method targets relatively unaffected regions for sublayer segmentation, ensuring accurate boundary delineation in areas with minimal disruption. In severely affected regions, identified by a box detection model, the total retina is segmented as a single layer to avoid errors. Our model significantly outperforms standard models, achieving an average Dice coefficient of [Formula: see text] for total retina and [Formula: see text] for retinal sublayers. The most substantial improvement was in the segmentation of the photoreceptor inner segment, with Dice coefficient increasing by [Formula: see text]. This approach provides a balance between granularity and reliability, making it suitable for clinical application in tracking disease progression and evaluating therapeutic efficacy.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"4739"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11807158/pdf/","citationCount":"0","resultStr":"{\"title\":\"Looking outside the box with a pathology aware AI approach for analyzing OCT retinal images in Stargardt disease.\",\"authors\":\"Parisa Khateri, Tiana Koottungal, Damon Wong, Rupert W Strauss, Lucas Janeschitz-Kriegl, Maximilian Pfau, Leopold Schmetterer, Hendrik P N Scholl\",\"doi\":\"10.1038/s41598-025-85213-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stargardt disease type 1 (STGD1) is a genetic disorder that leads to progressive vision loss, with no approved treatments currently available. The development of effective therapies faces the challenge of identifying appropriate outcome measures that accurately reflect treatment benefits. Optical Coherence Tomography (OCT) provides high-resolution retinal images, serving as a valuable tool for deriving potential outcome measures, such as retinal thickness. However, automated segmentation of OCT images, particularly in regions disrupted by degeneration, remains complex. In this study, we propose a deep learning-based approach that incorporates a pathology-aware loss function to segment retinal sublayers in OCT images from patients with STGD1. This method targets relatively unaffected regions for sublayer segmentation, ensuring accurate boundary delineation in areas with minimal disruption. In severely affected regions, identified by a box detection model, the total retina is segmented as a single layer to avoid errors. Our model significantly outperforms standard models, achieving an average Dice coefficient of [Formula: see text] for total retina and [Formula: see text] for retinal sublayers. The most substantial improvement was in the segmentation of the photoreceptor inner segment, with Dice coefficient increasing by [Formula: see text]. This approach provides a balance between granularity and reliability, making it suitable for clinical application in tracking disease progression and evaluating therapeutic efficacy.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"4739\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11807158/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-85213-w\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-85213-w","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Looking outside the box with a pathology aware AI approach for analyzing OCT retinal images in Stargardt disease.
Stargardt disease type 1 (STGD1) is a genetic disorder that leads to progressive vision loss, with no approved treatments currently available. The development of effective therapies faces the challenge of identifying appropriate outcome measures that accurately reflect treatment benefits. Optical Coherence Tomography (OCT) provides high-resolution retinal images, serving as a valuable tool for deriving potential outcome measures, such as retinal thickness. However, automated segmentation of OCT images, particularly in regions disrupted by degeneration, remains complex. In this study, we propose a deep learning-based approach that incorporates a pathology-aware loss function to segment retinal sublayers in OCT images from patients with STGD1. This method targets relatively unaffected regions for sublayer segmentation, ensuring accurate boundary delineation in areas with minimal disruption. In severely affected regions, identified by a box detection model, the total retina is segmented as a single layer to avoid errors. Our model significantly outperforms standard models, achieving an average Dice coefficient of [Formula: see text] for total retina and [Formula: see text] for retinal sublayers. The most substantial improvement was in the segmentation of the photoreceptor inner segment, with Dice coefficient increasing by [Formula: see text]. This approach provides a balance between granularity and reliability, making it suitable for clinical application in tracking disease progression and evaluating therapeutic efficacy.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.