EXPRESS:肠道微生物源短链脂肪酸通过g蛋白偶联受体41信号抑制大鼠伤害性次级神经元的兴奋性

IF 2.8 3区 医学 Q2 NEUROSCIENCES
Yukito Sashide, Mamoru Takeda
{"title":"EXPRESS:肠道微生物源短链脂肪酸通过g蛋白偶联受体41信号抑制大鼠伤害性次级神经元的兴奋性","authors":"Yukito Sashide, Mamoru Takeda","doi":"10.1177/17448069251320233","DOIUrl":null,"url":null,"abstract":"<p><p>Short-chain free fatty acids (SCFAs) are generated by gut microbiota through anaerobic fermentation of dietary fibers. Although gut microbiota-derived SCFAs modulate voltage-gated Ca<sup>2+</sup> channels via G-protein-coupled receptor 41 (GPR41) in isolated sympathetic ganglion neurons, the influence of SCFAs, specifically propionic acid (PA), on the excitability of nociceptive neurons under in vivo conditions has yet to be ascertained. In the current study we assessed whether systemic PA administration diminishes the excitability of nociceptive trigeminal spinal nucleus caudalis (SpVc) wide-dynamic range neurons responding to mechanical stimulation. Extracellular single-unit recordings from SpVc wide-dynamic range neurons were performed in anesthetized rats after mechanical stimulation of the orofacial region. PA significantly and reversibly inhibited the mean firing frequency of SpVc neurons in response to both non-noxious and noxious mechanical stimuli in a dose-dependent manner. Simultaneous administration of a GPR41 inhibitor abolished the PA-induced inhibited firing rate of SpVc neurons, indicating that systemic PA decreased the excitability of nociceptive secondary trigeminal neurons by activating GPR41 signaling-mediated inhibition of voltage-gated Ca<sup>2+</sup> channels in the central terminals of the SpVc. Modulation of trigeminal nociception by systemic SCFA administration indicates that gut microbiota-derived SCFAs could be effective analgesic agents for relieving trigeminal pain, creating a new therapeutic strategy for the management of trigeminal pain, including clinical pain.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069251320233"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829300/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gut microbiota-derived short-chain fatty acid suppresses the excitability of rat nociceptive secondary neurons via G-protein-coupled receptor 41 signaling.\",\"authors\":\"Yukito Sashide, Mamoru Takeda\",\"doi\":\"10.1177/17448069251320233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Short-chain free fatty acids (SCFAs) are generated by gut microbiota through anaerobic fermentation of dietary fibers. Although gut microbiota-derived SCFAs modulate voltage-gated Ca<sup>2+</sup> channels via G-protein-coupled receptor 41 (GPR41) in isolated sympathetic ganglion neurons, the influence of SCFAs, specifically propionic acid (PA), on the excitability of nociceptive neurons under in vivo conditions has yet to be ascertained. In the current study we assessed whether systemic PA administration diminishes the excitability of nociceptive trigeminal spinal nucleus caudalis (SpVc) wide-dynamic range neurons responding to mechanical stimulation. Extracellular single-unit recordings from SpVc wide-dynamic range neurons were performed in anesthetized rats after mechanical stimulation of the orofacial region. PA significantly and reversibly inhibited the mean firing frequency of SpVc neurons in response to both non-noxious and noxious mechanical stimuli in a dose-dependent manner. Simultaneous administration of a GPR41 inhibitor abolished the PA-induced inhibited firing rate of SpVc neurons, indicating that systemic PA decreased the excitability of nociceptive secondary trigeminal neurons by activating GPR41 signaling-mediated inhibition of voltage-gated Ca<sup>2+</sup> channels in the central terminals of the SpVc. Modulation of trigeminal nociception by systemic SCFA administration indicates that gut microbiota-derived SCFAs could be effective analgesic agents for relieving trigeminal pain, creating a new therapeutic strategy for the management of trigeminal pain, including clinical pain.</p>\",\"PeriodicalId\":19010,\"journal\":{\"name\":\"Molecular Pain\",\"volume\":\" \",\"pages\":\"17448069251320233\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829300/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pain\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/17448069251320233\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17448069251320233","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

短链游离脂肪酸(SCFAs)是由肠道菌群通过膳食纤维厌氧发酵产生的。虽然肠道微生物来源的SCFAs通过分离的交感神经节神经元中的g蛋白偶联受体41 (GPR41)调节电压门控Ca2+通道,但SCFAs,特别是丙酸(PA),在体内条件下对伤害性神经元的兴奋性的影响尚未确定。在当前的研究中,我们评估了系统性PA给药是否会降低三叉神经脊髓尾核(SpVc)宽动态范围神经元对机械刺激的兴奋性。对麻醉大鼠进行口面区机械刺激后,对SpVc宽动态范围神经元进行细胞外单单元记录。PA显著且可逆地抑制SpVc神经元对非有害和有害机械刺激的平均放电频率,且呈剂量依赖性。同时给药GPR41抑制剂消除了PA诱导的SpVc神经元的抑制放电率,表明全身性PA通过激活GPR41信号介导的SpVc中央末端电压门控Ca2+通道抑制,降低了伤害性三叉神经次级神经元的兴奋性。系统给药SCFA对三叉神经痛感的调节表明,肠道微生物来源的SCFA可能是缓解三叉神经疼痛的有效镇痛药,为三叉神经疼痛的治疗创造了一种新的治疗策略,包括临床疼痛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gut microbiota-derived short-chain fatty acid suppresses the excitability of rat nociceptive secondary neurons via G-protein-coupled receptor 41 signaling.

Short-chain free fatty acids (SCFAs) are generated by gut microbiota through anaerobic fermentation of dietary fibers. Although gut microbiota-derived SCFAs modulate voltage-gated Ca2+ channels via G-protein-coupled receptor 41 (GPR41) in isolated sympathetic ganglion neurons, the influence of SCFAs, specifically propionic acid (PA), on the excitability of nociceptive neurons under in vivo conditions has yet to be ascertained. In the current study we assessed whether systemic PA administration diminishes the excitability of nociceptive trigeminal spinal nucleus caudalis (SpVc) wide-dynamic range neurons responding to mechanical stimulation. Extracellular single-unit recordings from SpVc wide-dynamic range neurons were performed in anesthetized rats after mechanical stimulation of the orofacial region. PA significantly and reversibly inhibited the mean firing frequency of SpVc neurons in response to both non-noxious and noxious mechanical stimuli in a dose-dependent manner. Simultaneous administration of a GPR41 inhibitor abolished the PA-induced inhibited firing rate of SpVc neurons, indicating that systemic PA decreased the excitability of nociceptive secondary trigeminal neurons by activating GPR41 signaling-mediated inhibition of voltage-gated Ca2+ channels in the central terminals of the SpVc. Modulation of trigeminal nociception by systemic SCFA administration indicates that gut microbiota-derived SCFAs could be effective analgesic agents for relieving trigeminal pain, creating a new therapeutic strategy for the management of trigeminal pain, including clinical pain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Pain
Molecular Pain 医学-神经科学
CiteScore
5.60
自引率
3.00%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Molecular Pain is a peer-reviewed, open access journal that considers manuscripts in pain research at the cellular, subcellular and molecular levels. Molecular Pain provides a forum for molecular pain scientists to communicate their research findings in a targeted manner to others in this important and growing field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信