Xinwei Jiao, Yan Li, Yu Hu, Ruyu Yan, Ting Fu, Jun Liu, Zhijie Li
{"title":"抗生素引起的眼部微生物群失调影响小鼠角膜昼夜节律活动。","authors":"Xinwei Jiao, Yan Li, Yu Hu, Ruyu Yan, Ting Fu, Jun Liu, Zhijie Li","doi":"10.1016/j.mucimm.2025.01.010","DOIUrl":null,"url":null,"abstract":"<p><p>The ocular surface microbiota plays a critical role in maintaining corneal homeostasis, but its disruption and subsequent effects on corneal functions remain poorly understood. This study investigates how antibiotic-induced microbial depletion affects the corneal circadian transcriptome in C57BL/6J mice. Dysbiosis was induced using a topical antibiotic cocktail, and RNA sequencing was employed to analyze gene expression across eight time points over 24 h. Antibiotic treatment disrupted corneal circadian rhythms, eliminating rhythmicity in 1,812 genes and introducing rhythmicity in 1,928 previously arrhythmic genes. Furthermore, epithelial adhesion was impaired, inflammation was elevated, and neural sensitivity was reduced. More than 50 % of ocular microbial genera exhibited daily oscillations, with six genera showing significant correlations with corneal rhythmic transcripts. Additionally, the administration of TLR agonists restored circadian gene expression patterns, with partial recovery of corneal barrier function and immune homeostasis, further highlighting the potential of microbiota-targeted therapies in treating ocular surface disorders. These findings underscore the critical role of the ocular microbiota in regulating corneal health and suggest that restoring microbial balance via TLR activation may offer new therapeutic avenues for eye diseases.</p>","PeriodicalId":18877,"journal":{"name":"Mucosal Immunology","volume":" ","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antibiotic-induced dysbiosis of the ocular microbiome affects corneal circadian rhythmic activity in mice.\",\"authors\":\"Xinwei Jiao, Yan Li, Yu Hu, Ruyu Yan, Ting Fu, Jun Liu, Zhijie Li\",\"doi\":\"10.1016/j.mucimm.2025.01.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ocular surface microbiota plays a critical role in maintaining corneal homeostasis, but its disruption and subsequent effects on corneal functions remain poorly understood. This study investigates how antibiotic-induced microbial depletion affects the corneal circadian transcriptome in C57BL/6J mice. Dysbiosis was induced using a topical antibiotic cocktail, and RNA sequencing was employed to analyze gene expression across eight time points over 24 h. Antibiotic treatment disrupted corneal circadian rhythms, eliminating rhythmicity in 1,812 genes and introducing rhythmicity in 1,928 previously arrhythmic genes. Furthermore, epithelial adhesion was impaired, inflammation was elevated, and neural sensitivity was reduced. More than 50 % of ocular microbial genera exhibited daily oscillations, with six genera showing significant correlations with corneal rhythmic transcripts. Additionally, the administration of TLR agonists restored circadian gene expression patterns, with partial recovery of corneal barrier function and immune homeostasis, further highlighting the potential of microbiota-targeted therapies in treating ocular surface disorders. These findings underscore the critical role of the ocular microbiota in regulating corneal health and suggest that restoring microbial balance via TLR activation may offer new therapeutic avenues for eye diseases.</p>\",\"PeriodicalId\":18877,\"journal\":{\"name\":\"Mucosal Immunology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mucosal Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mucimm.2025.01.010\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mucosal Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.mucimm.2025.01.010","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Antibiotic-induced dysbiosis of the ocular microbiome affects corneal circadian rhythmic activity in mice.
The ocular surface microbiota plays a critical role in maintaining corneal homeostasis, but its disruption and subsequent effects on corneal functions remain poorly understood. This study investigates how antibiotic-induced microbial depletion affects the corneal circadian transcriptome in C57BL/6J mice. Dysbiosis was induced using a topical antibiotic cocktail, and RNA sequencing was employed to analyze gene expression across eight time points over 24 h. Antibiotic treatment disrupted corneal circadian rhythms, eliminating rhythmicity in 1,812 genes and introducing rhythmicity in 1,928 previously arrhythmic genes. Furthermore, epithelial adhesion was impaired, inflammation was elevated, and neural sensitivity was reduced. More than 50 % of ocular microbial genera exhibited daily oscillations, with six genera showing significant correlations with corneal rhythmic transcripts. Additionally, the administration of TLR agonists restored circadian gene expression patterns, with partial recovery of corneal barrier function and immune homeostasis, further highlighting the potential of microbiota-targeted therapies in treating ocular surface disorders. These findings underscore the critical role of the ocular microbiota in regulating corneal health and suggest that restoring microbial balance via TLR activation may offer new therapeutic avenues for eye diseases.
期刊介绍:
Mucosal Immunology, the official publication of the Society of Mucosal Immunology (SMI), serves as a forum for both basic and clinical scientists to discuss immunity and inflammation involving mucosal tissues. It covers gastrointestinal, pulmonary, nasopharyngeal, oral, ocular, and genitourinary immunology through original research articles, scholarly reviews, commentaries, editorials, and letters. The journal gives equal consideration to basic, translational, and clinical studies and also serves as a primary communication channel for the SMI governing board and its members, featuring society news, meeting announcements, policy discussions, and job/training opportunities advertisements.