分子氢吸入调节健康女性静息代谢:一项随机、双盲、安慰剂对照交叉研究的发现

IF 3 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Medical Gas Research Pub Date : 2025-09-01 Epub Date: 2025-02-08 DOI:10.4103/mgr.MEDGASRES-D-24-00085
Pavel Grepl, Michal Botek, Jakub Krejčí, Andrew McKune
{"title":"分子氢吸入调节健康女性静息代谢:一项随机、双盲、安慰剂对照交叉研究的发现","authors":"Pavel Grepl, Michal Botek, Jakub Krejčí, Andrew McKune","doi":"10.4103/mgr.MEDGASRES-D-24-00085","DOIUrl":null,"url":null,"abstract":"<p><p>Initially, molecular hydrogen was considered a physiologically inert and non-functional gas. However, experimental and clinical studies have shown that molecular hydrogen has anti-inflammatory, anti-apoptotic, and strong selective antioxidant effects. This study aimed to evaluate the effects of 60 minutes of molecular hydrogen inhalation on respiratory gas analysis parameters using a randomized, double-blind, placebo-controlled, crossover design. The study was conducted at Faculty of Physical Culture, Palacký University Olomouc from September 2022 to March 2023. Twenty, physically active female participants aged 22.1 ± 1.6 years who inhaled either molecular hydrogen or ambient air through a nasal cannula (300 mL/min) for 60 minutes while resting were included in this study. Metabolic response was measured using indirect calorimetry. Breath-by-breath data were averaged over four 15-minute intervals. Compared with placebo (ambient air), molecular hydrogen inhalation significantly decreased respiratory exchange ratio and ventilation across all intervals. Furthermore, the change in respiratory exchange ratio was negatively correlated with body fat percentage from 30 minutes onwards. In conclusion, 60 minutes of resting molecular hydrogen inhalation significantly increased resting fat oxidation, as evidenced by decreased respiratory exchange ratio, particularly in individuals with higher body fat percentages.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":" ","pages":"367-373"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12054672/pdf/","citationCount":"0","resultStr":"{\"title\":\"Molecular hydrogen inhalation modulates resting metabolism in healthy females: findings from a randomized, double-blind, placebo-controlled crossover study.\",\"authors\":\"Pavel Grepl, Michal Botek, Jakub Krejčí, Andrew McKune\",\"doi\":\"10.4103/mgr.MEDGASRES-D-24-00085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Initially, molecular hydrogen was considered a physiologically inert and non-functional gas. However, experimental and clinical studies have shown that molecular hydrogen has anti-inflammatory, anti-apoptotic, and strong selective antioxidant effects. This study aimed to evaluate the effects of 60 minutes of molecular hydrogen inhalation on respiratory gas analysis parameters using a randomized, double-blind, placebo-controlled, crossover design. The study was conducted at Faculty of Physical Culture, Palacký University Olomouc from September 2022 to March 2023. Twenty, physically active female participants aged 22.1 ± 1.6 years who inhaled either molecular hydrogen or ambient air through a nasal cannula (300 mL/min) for 60 minutes while resting were included in this study. Metabolic response was measured using indirect calorimetry. Breath-by-breath data were averaged over four 15-minute intervals. Compared with placebo (ambient air), molecular hydrogen inhalation significantly decreased respiratory exchange ratio and ventilation across all intervals. Furthermore, the change in respiratory exchange ratio was negatively correlated with body fat percentage from 30 minutes onwards. In conclusion, 60 minutes of resting molecular hydrogen inhalation significantly increased resting fat oxidation, as evidenced by decreased respiratory exchange ratio, particularly in individuals with higher body fat percentages.</p>\",\"PeriodicalId\":18559,\"journal\":{\"name\":\"Medical Gas Research\",\"volume\":\" \",\"pages\":\"367-373\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12054672/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Gas Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/mgr.MEDGASRES-D-24-00085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Gas Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/mgr.MEDGASRES-D-24-00085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

最初,氢分子被认为是一种生理惰性和无功能的气体。然而,实验和临床研究表明,分子氢具有抗炎、抗凋亡和较强的选择性抗氧化作用。本研究采用随机、双盲、安慰剂对照、交叉设计,旨在评估吸入60分钟分子氢对呼吸气体分析参数的影响。该研究于2022年9月至2023年3月在Palacký奥洛穆茨大学体育学院进行。20名年龄为22.1±1.6岁的体力活动女性参与者在休息时通过鼻插管(300 mL/min)吸入分子氢或周围空气60分钟。代谢反应用间接量热法测定。每次呼吸的数据在四个15分钟的间隔内平均。与安慰剂(环境空气)相比,分子氢吸入在所有时间间隔内显著降低呼吸交换率和通气量。此外,从30分钟开始,呼吸交换率的变化与体脂率呈负相关。总之,静息吸入60分钟分子氢显著增加静息脂肪氧化,呼吸交换率下降,尤其是体脂百分比较高的个体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular hydrogen inhalation modulates resting metabolism in healthy females: findings from a randomized, double-blind, placebo-controlled crossover study.

Initially, molecular hydrogen was considered a physiologically inert and non-functional gas. However, experimental and clinical studies have shown that molecular hydrogen has anti-inflammatory, anti-apoptotic, and strong selective antioxidant effects. This study aimed to evaluate the effects of 60 minutes of molecular hydrogen inhalation on respiratory gas analysis parameters using a randomized, double-blind, placebo-controlled, crossover design. The study was conducted at Faculty of Physical Culture, Palacký University Olomouc from September 2022 to March 2023. Twenty, physically active female participants aged 22.1 ± 1.6 years who inhaled either molecular hydrogen or ambient air through a nasal cannula (300 mL/min) for 60 minutes while resting were included in this study. Metabolic response was measured using indirect calorimetry. Breath-by-breath data were averaged over four 15-minute intervals. Compared with placebo (ambient air), molecular hydrogen inhalation significantly decreased respiratory exchange ratio and ventilation across all intervals. Furthermore, the change in respiratory exchange ratio was negatively correlated with body fat percentage from 30 minutes onwards. In conclusion, 60 minutes of resting molecular hydrogen inhalation significantly increased resting fat oxidation, as evidenced by decreased respiratory exchange ratio, particularly in individuals with higher body fat percentages.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical Gas Research
Medical Gas Research MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
5.10
自引率
13.80%
发文量
35
期刊介绍: Medical Gas Research is an open access journal which publishes basic, translational, and clinical research focusing on the neurobiology as well as multidisciplinary aspects of medical gas research and their applications to related disorders. The journal covers all areas of medical gas research, but also has several special sections. Authors can submit directly to these sections, whose peer-review process is overseen by our distinguished Section Editors: Inert gases - Edited by Xuejun Sun and Mark Coburn, Gasotransmitters - Edited by Atsunori Nakao and John Calvert, Oxygen and diving medicine - Edited by Daniel Rossignol and Ke Jian Liu, Anesthetic gases - Edited by Richard Applegate and Zhongcong Xie, Medical gas in other fields of biology - Edited by John Zhang. Medical gas is a large family including oxygen, hydrogen, carbon monoxide, carbon dioxide, nitrogen, xenon, hydrogen sulfide, nitrous oxide, carbon disulfide, argon, helium and other noble gases. These medical gases are used in multiple fields of clinical practice and basic science research including anesthesiology, hyperbaric oxygen medicine, diving medicine, internal medicine, emergency medicine, surgery, and many basic sciences disciplines such as physiology, pharmacology, biochemistry, microbiology and neurosciences. Due to the unique nature of medical gas practice, Medical Gas Research will serve as an information platform for educational and technological advances in the field of medical gas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信