Patrick A Boland, Philip D McEntee, Alice Moynihan, Kevin Nolan, Ronan A Cahill
{"title":"腹腔镜手术中烟雾泄漏评估的有效模拟模型的建立。","authors":"Patrick A Boland, Philip D McEntee, Alice Moynihan, Kevin Nolan, Ronan A Cahill","doi":"10.4103/mgr.MEDGASRES-D-24-00084","DOIUrl":null,"url":null,"abstract":"<p><p>The leakage of surgical gas and smoke from the peritoneum during laparoscopy may release noxious aerosols, including potential carcinogens, viruses and other contaminants, into the operating theatre, especially into the breathing zone of the surgical team. Reliable and realistic models and methods that develop and detect surgical smoke in simulated settings are necessary to effectively test devices and strategies intended to reduce such leaks. Here, we report a novel high-fidelity laparoscopic smoke model with innovative imaging methods applicable to the theatre setting, followed by an assessment of the usefulness of commercial laparoscopic trocars and smoke evacuation methods in mitigating gas leaks. Various smoke production methods (including tissue cautery and industrial smoke machinery) and detection methods (including schlieren imaging, laser videography, intraperitoneal video recording, and an aerosol detector) were tested, with the smoke machine model proving the most reproducible. Schlieren imaging, laser videography and intraperitoneal video recording were all effective methods of surgical smoke quantification. Following model establishment, laparoscopic trocars (VersaOne TM , Medtronic, Ireland) and smoke evacuation systems (EVA15 smart insufflator and evacuator, Palliare, PlumePort Activ® Smoke Filtration Device, Conmed and Valleylab TM Smoke Evacuation System, Medtronic) were examined in a standardized way with performance assessment by three surgeons independently using a boutique scoring system. The EVA15 outperformed other smoke systems in clearing surgical smoke from the operative field and in reducing trocar leaks during instrumentation. This method of simulated surgical smoke production and assessment can benchmark other laparoscopic equipment regarding smoke management strategies in a similar fashion.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":" ","pages":"404-408"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12054670/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of an effective simulation model for evaluating smoke leakage during laparoscopic surgery.\",\"authors\":\"Patrick A Boland, Philip D McEntee, Alice Moynihan, Kevin Nolan, Ronan A Cahill\",\"doi\":\"10.4103/mgr.MEDGASRES-D-24-00084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The leakage of surgical gas and smoke from the peritoneum during laparoscopy may release noxious aerosols, including potential carcinogens, viruses and other contaminants, into the operating theatre, especially into the breathing zone of the surgical team. Reliable and realistic models and methods that develop and detect surgical smoke in simulated settings are necessary to effectively test devices and strategies intended to reduce such leaks. Here, we report a novel high-fidelity laparoscopic smoke model with innovative imaging methods applicable to the theatre setting, followed by an assessment of the usefulness of commercial laparoscopic trocars and smoke evacuation methods in mitigating gas leaks. Various smoke production methods (including tissue cautery and industrial smoke machinery) and detection methods (including schlieren imaging, laser videography, intraperitoneal video recording, and an aerosol detector) were tested, with the smoke machine model proving the most reproducible. Schlieren imaging, laser videography and intraperitoneal video recording were all effective methods of surgical smoke quantification. Following model establishment, laparoscopic trocars (VersaOne TM , Medtronic, Ireland) and smoke evacuation systems (EVA15 smart insufflator and evacuator, Palliare, PlumePort Activ® Smoke Filtration Device, Conmed and Valleylab TM Smoke Evacuation System, Medtronic) were examined in a standardized way with performance assessment by three surgeons independently using a boutique scoring system. The EVA15 outperformed other smoke systems in clearing surgical smoke from the operative field and in reducing trocar leaks during instrumentation. This method of simulated surgical smoke production and assessment can benchmark other laparoscopic equipment regarding smoke management strategies in a similar fashion.</p>\",\"PeriodicalId\":18559,\"journal\":{\"name\":\"Medical Gas Research\",\"volume\":\" \",\"pages\":\"404-408\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12054670/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Gas Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/mgr.MEDGASRES-D-24-00084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Gas Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/mgr.MEDGASRES-D-24-00084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Development of an effective simulation model for evaluating smoke leakage during laparoscopic surgery.
The leakage of surgical gas and smoke from the peritoneum during laparoscopy may release noxious aerosols, including potential carcinogens, viruses and other contaminants, into the operating theatre, especially into the breathing zone of the surgical team. Reliable and realistic models and methods that develop and detect surgical smoke in simulated settings are necessary to effectively test devices and strategies intended to reduce such leaks. Here, we report a novel high-fidelity laparoscopic smoke model with innovative imaging methods applicable to the theatre setting, followed by an assessment of the usefulness of commercial laparoscopic trocars and smoke evacuation methods in mitigating gas leaks. Various smoke production methods (including tissue cautery and industrial smoke machinery) and detection methods (including schlieren imaging, laser videography, intraperitoneal video recording, and an aerosol detector) were tested, with the smoke machine model proving the most reproducible. Schlieren imaging, laser videography and intraperitoneal video recording were all effective methods of surgical smoke quantification. Following model establishment, laparoscopic trocars (VersaOne TM , Medtronic, Ireland) and smoke evacuation systems (EVA15 smart insufflator and evacuator, Palliare, PlumePort Activ® Smoke Filtration Device, Conmed and Valleylab TM Smoke Evacuation System, Medtronic) were examined in a standardized way with performance assessment by three surgeons independently using a boutique scoring system. The EVA15 outperformed other smoke systems in clearing surgical smoke from the operative field and in reducing trocar leaks during instrumentation. This method of simulated surgical smoke production and assessment can benchmark other laparoscopic equipment regarding smoke management strategies in a similar fashion.
期刊介绍:
Medical Gas Research is an open access journal which publishes basic, translational, and clinical research focusing on the neurobiology as well as multidisciplinary aspects of medical gas research and their applications to related disorders. The journal covers all areas of medical gas research, but also has several special sections. Authors can submit directly to these sections, whose peer-review process is overseen by our distinguished Section Editors: Inert gases - Edited by Xuejun Sun and Mark Coburn, Gasotransmitters - Edited by Atsunori Nakao and John Calvert, Oxygen and diving medicine - Edited by Daniel Rossignol and Ke Jian Liu, Anesthetic gases - Edited by Richard Applegate and Zhongcong Xie, Medical gas in other fields of biology - Edited by John Zhang. Medical gas is a large family including oxygen, hydrogen, carbon monoxide, carbon dioxide, nitrogen, xenon, hydrogen sulfide, nitrous oxide, carbon disulfide, argon, helium and other noble gases. These medical gases are used in multiple fields of clinical practice and basic science research including anesthesiology, hyperbaric oxygen medicine, diving medicine, internal medicine, emergency medicine, surgery, and many basic sciences disciplines such as physiology, pharmacology, biochemistry, microbiology and neurosciences. Due to the unique nature of medical gas practice, Medical Gas Research will serve as an information platform for educational and technological advances in the field of medical gas.