Changjun Yang, John Aaron Howell, Lei Liu, Rachel E. Gunraj, Eduardo Candelario-Jalil
{"title":"脑及外周组织中adropin水平随衰老的变化。","authors":"Changjun Yang, John Aaron Howell, Lei Liu, Rachel E. Gunraj, Eduardo Candelario-Jalil","doi":"10.1016/j.neulet.2025.138150","DOIUrl":null,"url":null,"abstract":"<div><div>Adropin is a bioactive peptide found in the brain and various peripheral tissues. Evidence suggests that aging significantly decreases brain adropin levels, and interventions that elevate adropin may help alleviate age-related neurological disorders such as ischemic stroke and cognitive decline. However, the impact of aging on peripheral tissue adropin levels and its relationship with the neural recognition molecule NB-3/contactin-6 in the brain remains unclear. In this study, we quantified adropin using immunoblotting in brain and peripheral tissues (liver, lung, kidney, spleen, ileum, colon) from young (8–10 weeks) and aged (18–20 months) male mice. Results indicated a significant decrease in brain adropin levels in aged mice, while peripheral tissues showed no significant changes compared to young controls. Additionally, levels of NB-3/contactin-6, a potential adropin receptor and Notch1 ligand, were lower in aged brains. Co-immunoprecipitation demonstrated that adropin physically associates with brain NB-3. Notably, the age-related reduction in brain adropin correlates with increased oxidative stress markers (gp91<sup>phox</sup> and 4-hydroxynonenal). We provide the first evidence that aging is linked to a concurrent loss of adropin and NB-3 in the brain but not in peripheral tissues. Interventions to maintain brain adropin levels could help mitigate the brain’s aging process and alleviate age-related neurological dysfunction.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"850 ","pages":"Article 138150"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Changes in adropin levels in brain and peripheral tissues with aging\",\"authors\":\"Changjun Yang, John Aaron Howell, Lei Liu, Rachel E. Gunraj, Eduardo Candelario-Jalil\",\"doi\":\"10.1016/j.neulet.2025.138150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Adropin is a bioactive peptide found in the brain and various peripheral tissues. Evidence suggests that aging significantly decreases brain adropin levels, and interventions that elevate adropin may help alleviate age-related neurological disorders such as ischemic stroke and cognitive decline. However, the impact of aging on peripheral tissue adropin levels and its relationship with the neural recognition molecule NB-3/contactin-6 in the brain remains unclear. In this study, we quantified adropin using immunoblotting in brain and peripheral tissues (liver, lung, kidney, spleen, ileum, colon) from young (8–10 weeks) and aged (18–20 months) male mice. Results indicated a significant decrease in brain adropin levels in aged mice, while peripheral tissues showed no significant changes compared to young controls. Additionally, levels of NB-3/contactin-6, a potential adropin receptor and Notch1 ligand, were lower in aged brains. Co-immunoprecipitation demonstrated that adropin physically associates with brain NB-3. Notably, the age-related reduction in brain adropin correlates with increased oxidative stress markers (gp91<sup>phox</sup> and 4-hydroxynonenal). We provide the first evidence that aging is linked to a concurrent loss of adropin and NB-3 in the brain but not in peripheral tissues. Interventions to maintain brain adropin levels could help mitigate the brain’s aging process and alleviate age-related neurological dysfunction.</div></div>\",\"PeriodicalId\":19290,\"journal\":{\"name\":\"Neuroscience Letters\",\"volume\":\"850 \",\"pages\":\"Article 138150\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience Letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304394025000382\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304394025000382","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Changes in adropin levels in brain and peripheral tissues with aging
Adropin is a bioactive peptide found in the brain and various peripheral tissues. Evidence suggests that aging significantly decreases brain adropin levels, and interventions that elevate adropin may help alleviate age-related neurological disorders such as ischemic stroke and cognitive decline. However, the impact of aging on peripheral tissue adropin levels and its relationship with the neural recognition molecule NB-3/contactin-6 in the brain remains unclear. In this study, we quantified adropin using immunoblotting in brain and peripheral tissues (liver, lung, kidney, spleen, ileum, colon) from young (8–10 weeks) and aged (18–20 months) male mice. Results indicated a significant decrease in brain adropin levels in aged mice, while peripheral tissues showed no significant changes compared to young controls. Additionally, levels of NB-3/contactin-6, a potential adropin receptor and Notch1 ligand, were lower in aged brains. Co-immunoprecipitation demonstrated that adropin physically associates with brain NB-3. Notably, the age-related reduction in brain adropin correlates with increased oxidative stress markers (gp91phox and 4-hydroxynonenal). We provide the first evidence that aging is linked to a concurrent loss of adropin and NB-3 in the brain but not in peripheral tissues. Interventions to maintain brain adropin levels could help mitigate the brain’s aging process and alleviate age-related neurological dysfunction.
期刊介绍:
Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.