抑制RAC1激活剂DOCK2通过调节巨噬细胞极化和肝星状细胞活化来改善胆汁淤积性肝损伤。

IF 5.7 2区 生物学 Q1 BIOLOGY
Jianli Qiu, Yitong Qu, Yinli Li, Cancan Li, Junling Wang, Lu Meng, Xiaojin Jing, Jiangping Fu, Yan Xu, Yuna Chai
{"title":"抑制RAC1激活剂DOCK2通过调节巨噬细胞极化和肝星状细胞活化来改善胆汁淤积性肝损伤。","authors":"Jianli Qiu, Yitong Qu, Yinli Li, Cancan Li, Junling Wang, Lu Meng, Xiaojin Jing, Jiangping Fu, Yan Xu, Yuna Chai","doi":"10.1186/s13062-025-00612-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The Rho GTPase Rac family small GTPase 1 (RAC1) is considered a promising fibrotic therapeutic target, but the role of its activator, dedicator of cytokinesis 2 (DOCK2), in liver fibrosis is largely unknown. This study aimed to investigate the expression and role of DOCK2 in cholestasis-induced liver fibrosis and to further explore the potential mechanisms.</p><p><strong>Results: </strong>Cholestasis was induced in male C57BL/6 mice by bile duct ligation (BDL). DOCK2 knockdown was achieved by tail vein injection of adenovirus containing DOCK2-targeting shRNA. The effect of DOCK2 knockdown on cholestatic liver injury was evaluated at different time points after BDL. Hepatic DOCK2 expression gradually increased after BDL. Knockdown of DOCK2 reduced the necrotic area in BDL liver and downregulated serum levels of liver injury indicators. At 3d post-BDL (acute phase), DOCK2 knockdown alleviated M1 macrophage inflammation in the liver, as evidenced by reduced infiltrating iNOS + macrophages and inflammatory cytokines and mitigated NLRP3 inflammasome activation. At 14d post-BDL (chronic phase), DOCK2 knockdown suppressed hepatic stellate cell (HSC) activation and liver fibrosis as indicated by decreased α-SMA + HSCs and extracellular matrix deposition. In vitro experiments further demonstrated that DOCK2 knockdown suppressed M1 macrophage polarisation and HSC to myofibroblast transition, accompanied by inhibition of RAC1 activation.</p><p><strong>Conclusions: </strong>In summary, this study demonstrates for the first time that the RAC1 activator DOCK2 regulates M1 macrophage polarisation and hepatic stellate cell activation to promote cholestasis-induced liver inflammation and fibrosis, suggesting that DOCK2 may be a potential therapeutic target in cholestatic liver injury.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"20 1","pages":"21"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11807328/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inhibition of RAC1 activator DOCK2 ameliorates cholestatic liver injury via regulating macrophage polarisation and hepatic stellate cell activation.\",\"authors\":\"Jianli Qiu, Yitong Qu, Yinli Li, Cancan Li, Junling Wang, Lu Meng, Xiaojin Jing, Jiangping Fu, Yan Xu, Yuna Chai\",\"doi\":\"10.1186/s13062-025-00612-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The Rho GTPase Rac family small GTPase 1 (RAC1) is considered a promising fibrotic therapeutic target, but the role of its activator, dedicator of cytokinesis 2 (DOCK2), in liver fibrosis is largely unknown. This study aimed to investigate the expression and role of DOCK2 in cholestasis-induced liver fibrosis and to further explore the potential mechanisms.</p><p><strong>Results: </strong>Cholestasis was induced in male C57BL/6 mice by bile duct ligation (BDL). DOCK2 knockdown was achieved by tail vein injection of adenovirus containing DOCK2-targeting shRNA. The effect of DOCK2 knockdown on cholestatic liver injury was evaluated at different time points after BDL. Hepatic DOCK2 expression gradually increased after BDL. Knockdown of DOCK2 reduced the necrotic area in BDL liver and downregulated serum levels of liver injury indicators. At 3d post-BDL (acute phase), DOCK2 knockdown alleviated M1 macrophage inflammation in the liver, as evidenced by reduced infiltrating iNOS + macrophages and inflammatory cytokines and mitigated NLRP3 inflammasome activation. At 14d post-BDL (chronic phase), DOCK2 knockdown suppressed hepatic stellate cell (HSC) activation and liver fibrosis as indicated by decreased α-SMA + HSCs and extracellular matrix deposition. In vitro experiments further demonstrated that DOCK2 knockdown suppressed M1 macrophage polarisation and HSC to myofibroblast transition, accompanied by inhibition of RAC1 activation.</p><p><strong>Conclusions: </strong>In summary, this study demonstrates for the first time that the RAC1 activator DOCK2 regulates M1 macrophage polarisation and hepatic stellate cell activation to promote cholestasis-induced liver inflammation and fibrosis, suggesting that DOCK2 may be a potential therapeutic target in cholestatic liver injury.</p>\",\"PeriodicalId\":9164,\"journal\":{\"name\":\"Biology Direct\",\"volume\":\"20 1\",\"pages\":\"21\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11807328/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology Direct\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13062-025-00612-3\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13062-025-00612-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:Rho GTPase Rac家族小GTPase 1 (RAC1)被认为是一个有前景的纤维化治疗靶点,但其激活剂,细胞分裂奉献因子2 (DOCK2)在肝纤维化中的作用在很大程度上是未知的。本研究旨在探讨DOCK2在胆汁淤积性肝纤维化中的表达及其作用,并进一步探讨其可能的机制。结果:雄性C57BL/6小鼠胆管结扎(BDL)可引起胆汁淤积。通过尾静脉注射含有DOCK2靶向shRNA的腺病毒实现了DOCK2的敲除。在BDL后不同时间点评估DOCK2下调对胆汁淤积性肝损伤的影响。BDL后,肝脏DOCK2表达逐渐升高。敲低DOCK2可减少BDL肝脏的坏死面积,降低血清中肝损伤指标的水平。在bdl后3d(急性期),DOCK2敲低减轻了肝脏中M1巨噬细胞的炎症,这可以通过减少iNOS +巨噬细胞和炎症细胞因子的浸润以及减轻NLRP3炎症小体的激活来证明。在bdl后14d(慢慢性),DOCK2敲低抑制了肝星状细胞(HSC)的激活和肝纤维化,α-SMA + HSC和细胞外基质沉积减少。体外实验进一步证明,DOCK2敲除抑制了M1巨噬细胞极化和HSC向肌成纤维细胞的转变,同时抑制了RAC1的激活。结论:综上所述,本研究首次证实了RAC1激活剂DOCK2调节M1巨噬细胞极化和肝星状细胞活化,促进胆汁淤积诱导的肝脏炎症和纤维化,提示DOCK2可能是胆汁淤积性肝损伤的潜在治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inhibition of RAC1 activator DOCK2 ameliorates cholestatic liver injury via regulating macrophage polarisation and hepatic stellate cell activation.

Background: The Rho GTPase Rac family small GTPase 1 (RAC1) is considered a promising fibrotic therapeutic target, but the role of its activator, dedicator of cytokinesis 2 (DOCK2), in liver fibrosis is largely unknown. This study aimed to investigate the expression and role of DOCK2 in cholestasis-induced liver fibrosis and to further explore the potential mechanisms.

Results: Cholestasis was induced in male C57BL/6 mice by bile duct ligation (BDL). DOCK2 knockdown was achieved by tail vein injection of adenovirus containing DOCK2-targeting shRNA. The effect of DOCK2 knockdown on cholestatic liver injury was evaluated at different time points after BDL. Hepatic DOCK2 expression gradually increased after BDL. Knockdown of DOCK2 reduced the necrotic area in BDL liver and downregulated serum levels of liver injury indicators. At 3d post-BDL (acute phase), DOCK2 knockdown alleviated M1 macrophage inflammation in the liver, as evidenced by reduced infiltrating iNOS + macrophages and inflammatory cytokines and mitigated NLRP3 inflammasome activation. At 14d post-BDL (chronic phase), DOCK2 knockdown suppressed hepatic stellate cell (HSC) activation and liver fibrosis as indicated by decreased α-SMA + HSCs and extracellular matrix deposition. In vitro experiments further demonstrated that DOCK2 knockdown suppressed M1 macrophage polarisation and HSC to myofibroblast transition, accompanied by inhibition of RAC1 activation.

Conclusions: In summary, this study demonstrates for the first time that the RAC1 activator DOCK2 regulates M1 macrophage polarisation and hepatic stellate cell activation to promote cholestasis-induced liver inflammation and fibrosis, suggesting that DOCK2 may be a potential therapeutic target in cholestatic liver injury.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biology Direct
Biology Direct 生物-生物学
CiteScore
6.40
自引率
10.90%
发文量
32
审稿时长
7 months
期刊介绍: Biology Direct serves the life science research community as an open access, peer-reviewed online journal, providing authors and readers with an alternative to the traditional model of peer review. Biology Direct considers original research articles, hypotheses, comments, discovery notes and reviews in subject areas currently identified as those most conducive to the open review approach, primarily those with a significant non-experimental component.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信