regg - eqtl:整合转录因子效应揭示调控变异。

IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY
American journal of human genetics Pub Date : 2025-03-06 Epub Date: 2025-02-07 DOI:10.1016/j.ajhg.2025.01.015
Rekha Mudappathi, Tatiana Patton, Hai Chen, Ping Yang, Zhifu Sun, Panwen Wang, Chang-Xin Shi, Junwen Wang, Li Liu
{"title":"regg - eqtl:整合转录因子效应揭示调控变异。","authors":"Rekha Mudappathi, Tatiana Patton, Hai Chen, Ping Yang, Zhifu Sun, Panwen Wang, Chang-Xin Shi, Junwen Wang, Li Liu","doi":"10.1016/j.ajhg.2025.01.015","DOIUrl":null,"url":null,"abstract":"<p><p>Regulatory single-nucleotide variants (rSNVs) in noncoding regions of the genome play a crucial role in gene transcription by altering transcription factor (TF) binding, chromatin states, and other epigenetic modifications. Existing expression quantitative trait locus (eQTL) methods identify genomic loci associated with gene-expression changes, but they often fall short in pinpointing causal variants. We introduce reg-eQTL, a computational method that incorporates TF effects and interactions with genetic variants into eQTL analysis. This approach provides deeper insights into the regulatory mechanisms, bringing us one step closer to identifying potential causal variants by uncovering how TFs interact with SNVs to influence gene expression. This method defines a trio consisting of a genetic variant, a target gene, and a TF and tests its impact on gene transcription. In comprehensive simulations, reg-eQTL shows improved power of detecting rSNVs with low population frequency, weak effects, and synergetic interaction with TF as compared to traditional eQTL methods. Application of reg-eQTL to GTEx data from lung, brain, and whole-blood tissues uncovered regulatory trios that include eQTLs and increased the number of eQTLs shared across tissue types. Regulatory networks constructed on the basis of these trios reveal intricate gene regulation across tissue types.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"659-674"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11947170/pdf/","citationCount":"0","resultStr":"{\"title\":\"reg-eQTL: Integrating transcription factor effects to unveil regulatory variants.\",\"authors\":\"Rekha Mudappathi, Tatiana Patton, Hai Chen, Ping Yang, Zhifu Sun, Panwen Wang, Chang-Xin Shi, Junwen Wang, Li Liu\",\"doi\":\"10.1016/j.ajhg.2025.01.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Regulatory single-nucleotide variants (rSNVs) in noncoding regions of the genome play a crucial role in gene transcription by altering transcription factor (TF) binding, chromatin states, and other epigenetic modifications. Existing expression quantitative trait locus (eQTL) methods identify genomic loci associated with gene-expression changes, but they often fall short in pinpointing causal variants. We introduce reg-eQTL, a computational method that incorporates TF effects and interactions with genetic variants into eQTL analysis. This approach provides deeper insights into the regulatory mechanisms, bringing us one step closer to identifying potential causal variants by uncovering how TFs interact with SNVs to influence gene expression. This method defines a trio consisting of a genetic variant, a target gene, and a TF and tests its impact on gene transcription. In comprehensive simulations, reg-eQTL shows improved power of detecting rSNVs with low population frequency, weak effects, and synergetic interaction with TF as compared to traditional eQTL methods. Application of reg-eQTL to GTEx data from lung, brain, and whole-blood tissues uncovered regulatory trios that include eQTLs and increased the number of eQTLs shared across tissue types. Regulatory networks constructed on the basis of these trios reveal intricate gene regulation across tissue types.</p>\",\"PeriodicalId\":7659,\"journal\":{\"name\":\"American journal of human genetics\",\"volume\":\" \",\"pages\":\"659-674\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11947170/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of human genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ajhg.2025.01.015\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2025.01.015","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

基因组非编码区的调节性单核苷酸变异(rsnv)通过改变转录因子(TF)结合、染色质状态和其他表观遗传修饰,在基因转录中起着至关重要的作用。现有的表达数量性状位点(eQTL)方法识别与基因表达变化相关的基因组位点,但它们在精确定位因果变异方面往往存在不足。我们介绍了reg-eQTL,这是一种将TF效应和与遗传变异的相互作用纳入eQTL分析的计算方法。这种方法提供了对调控机制的更深入的了解,通过揭示tf如何与snv相互作用以影响基因表达,使我们更接近于识别潜在的因果变异。该方法定义了由遗传变异、靶基因和TF组成的三重奏,并测试其对基因转录的影响。在综合模拟中,与传统的eQTL方法相比,regg -eQTL方法在检测低种群频率、弱效应和与TF协同作用的rsnv方面表现出更高的能力。将regg - eqtl应用于肺、脑和全血组织的GTEx数据,发现了包括eqtl在内的调节三元组,并增加了组织类型间共享的eqtl数量。在这些三重奏的基础上构建的调控网络揭示了复杂的跨组织类型的基因调控。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
reg-eQTL: Integrating transcription factor effects to unveil regulatory variants.

Regulatory single-nucleotide variants (rSNVs) in noncoding regions of the genome play a crucial role in gene transcription by altering transcription factor (TF) binding, chromatin states, and other epigenetic modifications. Existing expression quantitative trait locus (eQTL) methods identify genomic loci associated with gene-expression changes, but they often fall short in pinpointing causal variants. We introduce reg-eQTL, a computational method that incorporates TF effects and interactions with genetic variants into eQTL analysis. This approach provides deeper insights into the regulatory mechanisms, bringing us one step closer to identifying potential causal variants by uncovering how TFs interact with SNVs to influence gene expression. This method defines a trio consisting of a genetic variant, a target gene, and a TF and tests its impact on gene transcription. In comprehensive simulations, reg-eQTL shows improved power of detecting rSNVs with low population frequency, weak effects, and synergetic interaction with TF as compared to traditional eQTL methods. Application of reg-eQTL to GTEx data from lung, brain, and whole-blood tissues uncovered regulatory trios that include eQTLs and increased the number of eQTLs shared across tissue types. Regulatory networks constructed on the basis of these trios reveal intricate gene regulation across tissue types.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.70
自引率
4.10%
发文量
185
审稿时长
1 months
期刊介绍: The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信