{"title":"具有时空调节特性的一步成形Janus水凝胶用于无缝线和高质量肌腱愈合。","authors":"Chenguang Ouyang, Tian Tu, Haojie Yu, Li Wang, Zhipeng Ni, Jian Yang, Yanzhao Dong, Xiaodi Zou, Weijie Zhou, Jinyi Liu, Dingning Chen, Yu Wang, Xudong Wu, Hong Yi, Xunchun Yuan, Zhenfeng Liu, Hui Lu","doi":"10.1002/advs.202411400","DOIUrl":null,"url":null,"abstract":"<p>Janus hydrogels have promising applications in tendon healing and anti-peritendinous adhesions. However, their complicated preparation methods, weak mechanical properties, and unstable adhesion interfaces have severely limited their application in suture-free and high-quality tendon healing. In this work, by controlling the interfacial distribution of free -COOH groups and cationic-π structures on both sides of the hydrogels, a series of PZBA-EGCG-ALC Janus hydrogels with varying degrees of asymmetric properties are successfully prepared using a simple and efficient one-step synthesis method. The tensile strength and elongation at the break of the Janus hydrogel are as high as 0.51 ± 0.04 MPa and 922.89 ± 28.59%. In addition, the Janus hydrogel can achieve a high difference in adhesion strength (nearly 20-fold) while maintaining a strong adhesion strength on their bottom sides (up to 524.8 ± 33.1 J m<sup>−2</sup>). In the spatial dimension, its excellent mechanical compliance and one-sided adhesion behavior can provide effective mechanical support and physical barriers for the injured Achilles tendons. More importantly, the Janus hydrogel can also minimize early inflammation generation in the time dimension via its ROS-responsive PZBA-EGCG prodrug macromolecules. This study provided a more effective and convenient suture-free strategy for constructing Janus hydrogels to promote high-quality tendon healing.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 13","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202411400","citationCount":"0","resultStr":"{\"title\":\"One-Step Formed Janus Hydrogel with Time-Space Regulating Properties for Suture-Free and High-Quality Tendon Healing\",\"authors\":\"Chenguang Ouyang, Tian Tu, Haojie Yu, Li Wang, Zhipeng Ni, Jian Yang, Yanzhao Dong, Xiaodi Zou, Weijie Zhou, Jinyi Liu, Dingning Chen, Yu Wang, Xudong Wu, Hong Yi, Xunchun Yuan, Zhenfeng Liu, Hui Lu\",\"doi\":\"10.1002/advs.202411400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Janus hydrogels have promising applications in tendon healing and anti-peritendinous adhesions. However, their complicated preparation methods, weak mechanical properties, and unstable adhesion interfaces have severely limited their application in suture-free and high-quality tendon healing. In this work, by controlling the interfacial distribution of free -COOH groups and cationic-π structures on both sides of the hydrogels, a series of PZBA-EGCG-ALC Janus hydrogels with varying degrees of asymmetric properties are successfully prepared using a simple and efficient one-step synthesis method. The tensile strength and elongation at the break of the Janus hydrogel are as high as 0.51 ± 0.04 MPa and 922.89 ± 28.59%. In addition, the Janus hydrogel can achieve a high difference in adhesion strength (nearly 20-fold) while maintaining a strong adhesion strength on their bottom sides (up to 524.8 ± 33.1 J m<sup>−2</sup>). In the spatial dimension, its excellent mechanical compliance and one-sided adhesion behavior can provide effective mechanical support and physical barriers for the injured Achilles tendons. More importantly, the Janus hydrogel can also minimize early inflammation generation in the time dimension via its ROS-responsive PZBA-EGCG prodrug macromolecules. This study provided a more effective and convenient suture-free strategy for constructing Janus hydrogels to promote high-quality tendon healing.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 13\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202411400\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202411400\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202411400","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
One-Step Formed Janus Hydrogel with Time-Space Regulating Properties for Suture-Free and High-Quality Tendon Healing
Janus hydrogels have promising applications in tendon healing and anti-peritendinous adhesions. However, their complicated preparation methods, weak mechanical properties, and unstable adhesion interfaces have severely limited their application in suture-free and high-quality tendon healing. In this work, by controlling the interfacial distribution of free -COOH groups and cationic-π structures on both sides of the hydrogels, a series of PZBA-EGCG-ALC Janus hydrogels with varying degrees of asymmetric properties are successfully prepared using a simple and efficient one-step synthesis method. The tensile strength and elongation at the break of the Janus hydrogel are as high as 0.51 ± 0.04 MPa and 922.89 ± 28.59%. In addition, the Janus hydrogel can achieve a high difference in adhesion strength (nearly 20-fold) while maintaining a strong adhesion strength on their bottom sides (up to 524.8 ± 33.1 J m−2). In the spatial dimension, its excellent mechanical compliance and one-sided adhesion behavior can provide effective mechanical support and physical barriers for the injured Achilles tendons. More importantly, the Janus hydrogel can also minimize early inflammation generation in the time dimension via its ROS-responsive PZBA-EGCG prodrug macromolecules. This study provided a more effective and convenient suture-free strategy for constructing Janus hydrogels to promote high-quality tendon healing.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.