大麻二酚通过PGE 2-EP2-cAMP-PKA信号通路减轻创伤性脑损伤大鼠的炎症反应。

IF 3.3 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yan Cao, Hengxi Li, Jiali Li, Tenghan Ling, Aiping Yin, Xinyuan Luo, Ying Zhou, Jinghui Li, Hongyan Jiang, Huawei Wang, Li Yang, Haiying Wu, Ping Li
{"title":"大麻二酚通过PGE 2-EP2-cAMP-PKA信号通路减轻创伤性脑损伤大鼠的炎症反应。","authors":"Yan Cao, Hengxi Li, Jiali Li, Tenghan Ling, Aiping Yin, Xinyuan Luo, Ying Zhou, Jinghui Li, Hongyan Jiang, Huawei Wang, Li Yang, Haiying Wu, Ping Li","doi":"10.3724/abbs.2024183","DOIUrl":null,"url":null,"abstract":"<p><p>Traumatic brain injury (TBI) is a recognized global public health problem. However, there are still limitations in the available therapeutic approaches and a lack of clinically effective drugs. Therefore, an in-depth exploration of the secondary pathological mechanism of TBI and the identification of new effective drugs are urgently needed. Cannabidiol (CBD), a component derived from the cannabis plant, has potential therapeutic effects on neurological diseases and has received increasing attention. However, few reports on CBD intervention in TBI patients exist. Here, we use the Feeney free-fall method to establish a rat TBI model. CBD significantly improves neurological deficit scores, neuronal damage and blood-brain barrier permeability in rats and significantly inhibits the expressions of the brain injury markers S-100β and NSE. Mechanistically, CBD attenuates TBI-induced astrocyte activation, reduces inflammation, and attenuates the expressions of inflammatory prostaglandin system indicators. The use of TG6-10-1 (EP2 inhibitor) and H-89 (PKA inhibitor) indicates that CBD attenuates TBI-induced neurological damage via the PGE <sub>2</sub>-EP2-cAMP-PKA signaling pathway. Overall, this research provides a novel drug candidate for the treatment of clinical brain trauma.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cannabidiol alleviates the inflammatory response in rats with traumatic brain injury through the PGE <sub>2</sub>-EP2-cAMP-PKA signaling pathway.\",\"authors\":\"Yan Cao, Hengxi Li, Jiali Li, Tenghan Ling, Aiping Yin, Xinyuan Luo, Ying Zhou, Jinghui Li, Hongyan Jiang, Huawei Wang, Li Yang, Haiying Wu, Ping Li\",\"doi\":\"10.3724/abbs.2024183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traumatic brain injury (TBI) is a recognized global public health problem. However, there are still limitations in the available therapeutic approaches and a lack of clinically effective drugs. Therefore, an in-depth exploration of the secondary pathological mechanism of TBI and the identification of new effective drugs are urgently needed. Cannabidiol (CBD), a component derived from the cannabis plant, has potential therapeutic effects on neurological diseases and has received increasing attention. However, few reports on CBD intervention in TBI patients exist. Here, we use the Feeney free-fall method to establish a rat TBI model. CBD significantly improves neurological deficit scores, neuronal damage and blood-brain barrier permeability in rats and significantly inhibits the expressions of the brain injury markers S-100β and NSE. Mechanistically, CBD attenuates TBI-induced astrocyte activation, reduces inflammation, and attenuates the expressions of inflammatory prostaglandin system indicators. The use of TG6-10-1 (EP2 inhibitor) and H-89 (PKA inhibitor) indicates that CBD attenuates TBI-induced neurological damage via the PGE <sub>2</sub>-EP2-cAMP-PKA signaling pathway. Overall, this research provides a novel drug candidate for the treatment of clinical brain trauma.</p>\",\"PeriodicalId\":6978,\"journal\":{\"name\":\"Acta biochimica et biophysica Sinica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta biochimica et biophysica Sinica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3724/abbs.2024183\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta biochimica et biophysica Sinica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3724/abbs.2024183","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

外伤性脑损伤(TBI)是一个公认的全球公共卫生问题。然而,可用的治疗方法仍然有限,缺乏临床有效的药物。因此,迫切需要深入探索TBI的继发病理机制,寻找新的有效药物。大麻二酚(CBD)是一种从大麻植物中提取的成分,对神经系统疾病具有潜在的治疗作用,受到越来越多的关注。然而,关于CBD干预TBI患者的报道很少。本文采用Feeney自由落体法建立大鼠TBI模型。CBD显著改善大鼠神经功能缺损评分、神经元损伤和血脑屏障通透性,显著抑制脑损伤标志物S-100β和NSE的表达。在机制上,CBD减弱tbi诱导的星形胶质细胞活化,减轻炎症,并减弱炎性前列腺素系统指标的表达。TG6-10-1 (EP2抑制剂)和H-89 (PKA抑制剂)的使用表明,CBD通过PGE 2-EP2-cAMP-PKA信号通路减轻tbi诱导的神经损伤。总之,本研究为临床脑外伤的治疗提供了一种新的候选药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cannabidiol alleviates the inflammatory response in rats with traumatic brain injury through the PGE 2-EP2-cAMP-PKA signaling pathway.

Traumatic brain injury (TBI) is a recognized global public health problem. However, there are still limitations in the available therapeutic approaches and a lack of clinically effective drugs. Therefore, an in-depth exploration of the secondary pathological mechanism of TBI and the identification of new effective drugs are urgently needed. Cannabidiol (CBD), a component derived from the cannabis plant, has potential therapeutic effects on neurological diseases and has received increasing attention. However, few reports on CBD intervention in TBI patients exist. Here, we use the Feeney free-fall method to establish a rat TBI model. CBD significantly improves neurological deficit scores, neuronal damage and blood-brain barrier permeability in rats and significantly inhibits the expressions of the brain injury markers S-100β and NSE. Mechanistically, CBD attenuates TBI-induced astrocyte activation, reduces inflammation, and attenuates the expressions of inflammatory prostaglandin system indicators. The use of TG6-10-1 (EP2 inhibitor) and H-89 (PKA inhibitor) indicates that CBD attenuates TBI-induced neurological damage via the PGE 2-EP2-cAMP-PKA signaling pathway. Overall, this research provides a novel drug candidate for the treatment of clinical brain trauma.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta biochimica et biophysica Sinica
Acta biochimica et biophysica Sinica 生物-生化与分子生物学
CiteScore
5.00
自引率
5.40%
发文量
170
审稿时长
3 months
期刊介绍: Acta Biochimica et Biophysica Sinica (ABBS) is an internationally peer-reviewed journal sponsored by the Shanghai Institute of Biochemistry and Cell Biology (CAS). ABBS aims to publish original research articles and review articles in diverse fields of biochemical research including Protein Science, Nucleic Acids, Molecular Biology, Cell Biology, Biophysics, Immunology, and Signal Transduction, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信