纳米体技术在工业化中的发展趋势

IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yuhao Wu
{"title":"纳米体技术在工业化中的发展趋势","authors":"Yuhao Wu","doi":"10.1186/s11671-025-04200-2","DOIUrl":null,"url":null,"abstract":"<div><p>Antibodies, which are important research entities in the field of biopharmaceuticals, hold a key position in the global pharmaceutical market. Nanobodies [a single-domain antibody (VHH)] have gradually shown unique advantages due to their specificity, small molecule size, high affinity, good stability, flexible delivery routes, and fast tissue penetration. The importance of nanobodies in the imaging, diagnosis, and treatment of diseases, especially tumors and autoimmune diseases, is increasing. This review addresses key technological hurdles, such as humanization, immunogenicity, and production scalability, and highlights novel strategies to overcome these challenges, including PEGylation, fusion with long-lived serum proteins, and advanced microbial expression systems. This review summarizes the characteristics, production, and industrialization of nanobodies, including nanobody-derived patents and clinical trials, from 2014 to 2023. Finally, the review explores some challenges associated with nanobody technology in biopharmaceuticals, therapeutic interventions, and diagnostic tools and potential solutions.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04200-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Trends in nanobody technology in industrialization\",\"authors\":\"Yuhao Wu\",\"doi\":\"10.1186/s11671-025-04200-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Antibodies, which are important research entities in the field of biopharmaceuticals, hold a key position in the global pharmaceutical market. Nanobodies [a single-domain antibody (VHH)] have gradually shown unique advantages due to their specificity, small molecule size, high affinity, good stability, flexible delivery routes, and fast tissue penetration. The importance of nanobodies in the imaging, diagnosis, and treatment of diseases, especially tumors and autoimmune diseases, is increasing. This review addresses key technological hurdles, such as humanization, immunogenicity, and production scalability, and highlights novel strategies to overcome these challenges, including PEGylation, fusion with long-lived serum proteins, and advanced microbial expression systems. This review summarizes the characteristics, production, and industrialization of nanobodies, including nanobody-derived patents and clinical trials, from 2014 to 2023. Finally, the review explores some challenges associated with nanobody technology in biopharmaceuticals, therapeutic interventions, and diagnostic tools and potential solutions.</p></div>\",\"PeriodicalId\":51136,\"journal\":{\"name\":\"Nanoscale Research Letters\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1186/s11671-025-04200-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s11671-025-04200-2\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-025-04200-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

抗体是生物制药领域的重要研究实体,在全球医药市场中占有重要地位。纳米抗体(single-domain antibody, VHH)因其特异性强、分子小、亲和力高、稳定性好、传递途径灵活、组织渗透快等特点,逐渐显示出独特的优势。纳米体在疾病,特别是肿瘤和自身免疫性疾病的成像、诊断和治疗中的重要性正在增加。本文综述了关键的技术障碍,如人源化、免疫原性和生产可扩展性,并强调了克服这些挑战的新策略,包括聚乙二醇化、与长寿命血清蛋白融合和先进的微生物表达系统。本文综述了2014年至2023年纳米体的特点、生产和产业化,包括纳米体衍生专利和临床试验。最后,综述探讨了纳米体技术在生物制药、治疗干预、诊断工具和潜在解决方案方面的一些挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trends in nanobody technology in industrialization

Antibodies, which are important research entities in the field of biopharmaceuticals, hold a key position in the global pharmaceutical market. Nanobodies [a single-domain antibody (VHH)] have gradually shown unique advantages due to their specificity, small molecule size, high affinity, good stability, flexible delivery routes, and fast tissue penetration. The importance of nanobodies in the imaging, diagnosis, and treatment of diseases, especially tumors and autoimmune diseases, is increasing. This review addresses key technological hurdles, such as humanization, immunogenicity, and production scalability, and highlights novel strategies to overcome these challenges, including PEGylation, fusion with long-lived serum proteins, and advanced microbial expression systems. This review summarizes the characteristics, production, and industrialization of nanobodies, including nanobody-derived patents and clinical trials, from 2014 to 2023. Finally, the review explores some challenges associated with nanobody technology in biopharmaceuticals, therapeutic interventions, and diagnostic tools and potential solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信